pool/stratum/algos/SWIFFTX/SWIFFTX.c
Tanguy Pruvot 8ad60658e4 Add x22i algo support, based on ccminer-x22i code, cleaned
Personal note: imo a factor for 256 would have been useful

Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
2018-10-03 20:05:29 +02:00

1155 lines
50 KiB
C

///////////////////////////////////////////////////////////////////////////////////////////////
//
// SWIFFTX ANSI C OPTIMIZED 32BIT IMPLEMENTATION FOR NIST SHA-3 COMPETITION
//
// SWIFFTX.c
//
// October 2008
//
// This is the source file of the OPTIMIZED 32BIT implementation of SWIFFTX hash function.
// SWIFFTX is a candidate function for SHA-3 NIST competition.
// More details about SWIFFTX can be found in the accompanying submission documents.
//
///////////////////////////////////////////////////////////////////////////////////////////////
#include "SWIFFTX.h"
// See the remarks concerning compatibility issues inside stdint.h.
#include "stdint.h"
// Remove this while using gcc:
//#include "stdbool.h"
#include <memory.h>
///////////////////////////////////////////////////////////////////////////////////////////////
// Constants and static tables portion.
///////////////////////////////////////////////////////////////////////////////////////////////
// In SWIFFTX we work over Z_257, so this is the modulus and the arithmetic is performed modulo
// this number.
#define FIELD_SIZE 257
// The size of FFT we use:
#define N 64
#define LOGN 6
#define EIGHTH_N (N / 8)
// The number of FFTS done on the input.
#define M (SWIFFTX_INPUT_BLOCK_SIZE / 8) // 32
// Omega is the 128th root of unity in Z_257.
// We choose w = 42.
#define OMEGA 42
// The size of the inner FFT lookup table:
#define W 8
// Calculates the sum and the difference of two numbers.
//
// Parameters:
// - A: the first operand. After the operation stores the sum of the two operands.
// - B: the second operand. After the operation stores the difference between the first and the
// second operands.
#define ADD_SUB(A, B) {register int temp = (B); B = ((A) - (B)); A = ((A) + (temp));}
// Quickly reduces an integer modulo 257.
//
// Parameters:
// - A: the input.
#define Q_REDUCE(A) (((A) & 0xff) - ((A) >> 8))
// Since we need to do the setup only once, this is the indicator variable:
static bool wasSetupDone = false;
// This array stores the powers of omegas that correspond to the indices, which are the input
// values. Known also as the "outer FFT twiddle factors".
swift_int16_t multipliers[N];
// This array stores the powers of omegas, multiplied by the corresponding values.
// We store this table to save computation time.
//
// To calculate the intermediate value of the compression function (the first out of two
// stages), we multiply the k-th bit of x_i by w^[(2i + 1) * k]. {x_i} is the input to the
// compression function, i is between 0 and 31, x_i is a 64-bit value.
// One can see the formula for this (intermediate) stage in the SWIFFT FSE 2008 paper --
// formula (2), section 3, page 6.
swift_int16_t fftTable[256 * EIGHTH_N];
// The A's we use in SWIFFTX shall be random elements of Z_257.
// We generated these A's from the decimal expansion of PI as follows: we converted each
// triple of digits into a decimal number d. If d < (257 * 3) we used (d % 257) for the next A
// element, otherwise move to the next triple of digits in the expansion. This guarntees that
// the A's are random, provided that PI digits are.
const swift_int16_t As[3 * M * N] =
{141, 78, 139, 75, 238, 205, 129, 126, 22, 245, 197, 169, 142, 118, 105, 78,
50, 149, 29, 208, 114, 34, 85, 117, 67, 148, 86, 256, 25, 49, 133, 93,
95, 36, 68, 231, 211, 102, 151, 128, 224, 117, 193, 27, 102, 187, 7, 105,
45, 130, 108, 124, 171, 151, 189, 128, 218, 134, 233, 165, 14, 201, 145, 134,
52, 203, 91, 96, 197, 69, 134, 213, 136, 93, 3, 249, 141, 16, 210, 73,
6, 92, 58, 74, 174, 6, 254, 91, 201, 107, 110, 76, 103, 11, 73, 16,
34, 209, 7, 127, 146, 254, 95, 176, 57, 13, 108, 245, 77, 92, 186, 117,
124, 97, 105, 118, 34, 74, 205, 122, 235, 53, 94, 238, 210, 227, 183, 11,
129, 159, 105, 183, 142, 129, 86, 21, 137, 138, 224, 223, 190, 188, 179, 188,
256, 25, 217, 176, 36, 176, 238, 127, 160, 210, 155, 148, 132, 0, 54, 127,
145, 6, 46, 85, 243, 95, 173, 123, 178, 207, 211, 183, 224, 173, 146, 35,
71, 114, 50, 22, 175, 1, 28, 19, 112, 129, 21, 34, 161, 159, 115, 52,
4, 193, 211, 92, 115, 49, 59, 217, 218, 96, 61, 81, 24, 202, 198, 89,
45, 128, 8, 51, 253, 87, 171, 35, 4, 188, 171, 10, 3, 137, 238, 73,
19, 208, 124, 163, 103, 177, 155, 147, 46, 84, 253, 233, 171, 241, 211, 217,
159, 48, 96, 79, 237, 18, 171, 226, 99, 1, 97, 195, 216, 163, 198, 95,
0, 201, 65, 228, 21, 153, 124, 230, 44, 35, 44, 108, 85, 156, 249, 207,
26, 222, 131, 1, 60, 242, 197, 150, 181, 19, 116, 213, 75, 98, 124, 240,
123, 207, 62, 255, 60, 143, 187, 157, 139, 9, 12, 104, 89, 49, 193, 146,
104, 196, 181, 82, 198, 253, 192, 191, 255, 122, 212, 104, 47, 20, 132, 208,
46, 170, 2, 69, 234, 36, 56, 163, 28, 152, 104, 238, 162, 56, 24, 58,
38, 150, 193, 254, 253, 125, 173, 35, 73, 126, 247, 239, 216, 6, 199, 15,
90, 12, 97, 122, 9, 84, 207, 127, 219, 72, 58, 30, 29, 182, 41, 192,
235, 248, 237, 74, 72, 176, 210, 252, 45, 64, 165, 87, 202, 241, 236, 223,
151, 242, 119, 239, 52, 112, 169, 28, 13, 37, 160, 60, 158, 81, 133, 60,
16, 145, 249, 192, 173, 217, 214, 93, 141, 184, 54, 34, 161, 104, 157, 95,
38, 133, 218, 227, 211, 181, 9, 66, 137, 143, 77, 33, 248, 159, 4, 55,
228, 48, 99, 219, 222, 184, 15, 36, 254, 256, 157, 237, 87, 139, 209, 113,
232, 85, 126, 167, 197, 100, 103, 166, 64, 225, 125, 205, 117, 135, 84, 128,
231, 112, 90, 241, 28, 22, 210, 147, 186, 49, 230, 21, 108, 39, 194, 47,
123, 199, 107, 114, 30, 210, 250, 143, 59, 156, 131, 133, 221, 27, 76, 99,
208, 250, 78, 12, 211, 141, 95, 81, 195, 106, 8, 232, 150, 212, 205, 221,
11, 225, 87, 219, 126, 136, 137, 180, 198, 48, 68, 203, 239, 252, 194, 235,
142, 137, 174, 172, 190, 145, 250, 221, 182, 204, 1, 195, 130, 153, 83, 241,
161, 239, 211, 138, 11, 169, 155, 245, 174, 49, 10, 166, 16, 130, 181, 139,
222, 222, 112, 99, 124, 94, 51, 243, 133, 194, 244, 136, 35, 248, 201, 177,
178, 186, 129, 102, 89, 184, 180, 41, 149, 96, 165, 72, 225, 231, 134, 158,
199, 28, 249, 16, 225, 195, 10, 210, 164, 252, 138, 8, 35, 152, 213, 199,
82, 116, 97, 230, 63, 199, 241, 35, 79, 120, 54, 174, 67, 112, 1, 76,
69, 222, 194, 96, 82, 94, 25, 228, 196, 145, 155, 136, 228, 234, 46, 101,
246, 51, 103, 166, 246, 75, 9, 200, 161, 4, 108, 35, 129, 168, 208, 144,
50, 14, 13, 220, 41, 132, 122, 127, 194, 9, 232, 234, 107, 28, 187, 8,
51, 141, 97, 221, 225, 9, 113, 170, 166, 102, 135, 22, 231, 185, 227, 187,
110, 145, 251, 146, 76, 22, 146, 228, 7, 53, 64, 25, 62, 198, 130, 190,
221, 232, 169, 64, 188, 199, 237, 249, 173, 218, 196, 191, 48, 224, 5, 113,
100, 166, 160, 21, 191, 197, 61, 162, 149, 171, 240, 183, 129, 231, 123, 204,
192, 179, 134, 15, 47, 161, 142, 177, 239, 234, 186, 237, 231, 53, 208, 95,
146, 36, 225, 231, 89, 142, 93, 248, 137, 124, 83, 39, 69, 77, 89, 208,
182, 48, 85, 147, 244, 164, 246, 68, 38, 190, 220, 35, 202, 91, 157, 151,
201, 240, 185, 218, 4, 152, 2, 132, 177, 88, 190, 196, 229, 74, 220, 135,
137, 196, 11, 47, 5, 251, 106, 144, 163, 60, 222, 127, 52, 57, 202, 102,
64, 140, 110, 206, 23, 182, 39, 245, 1, 163, 157, 186, 163, 80, 7, 230,
44, 249, 176, 102, 164, 125, 147, 120, 18, 191, 186, 125, 64, 65, 198, 157,
164, 213, 95, 61, 13, 181, 208, 91, 242, 197, 158, 34, 98, 169, 91, 14,
17, 93, 157, 17, 65, 30, 183, 6, 139, 58, 255, 108, 100, 136, 209, 144,
164, 6, 237, 33, 210, 110, 57, 126, 197, 136, 125, 244, 165, 151, 168, 3,
143, 251, 247, 155, 136, 130, 88, 14, 74, 121, 250, 133, 21, 226, 185, 232,
118, 132, 89, 64, 204, 161, 2, 70, 224, 159, 35, 204, 123, 180, 13, 52,
231, 57, 25, 78, 66, 69, 97, 42, 198, 84, 176, 59, 8, 232, 125, 134,
193, 2, 232, 109, 216, 69, 90, 142, 32, 38, 249, 37, 75, 180, 184, 188,
19, 47, 120, 87, 146, 70, 232, 120, 191, 45, 33, 38, 19, 248, 110, 110,
44, 64, 2, 84, 244, 228, 252, 228, 170, 123, 38, 144, 213, 144, 171, 212,
243, 87, 189, 46, 128, 110, 84, 77, 65, 183, 61, 184, 101, 44, 168, 68,
14, 106, 105, 8, 227, 211, 166, 39, 152, 43, 52, 254, 197, 55, 119, 89,
168, 65, 53, 138, 177, 56, 219, 0, 58, 121, 148, 18, 44, 100, 215, 103,
145, 229, 117, 196, 91, 89, 113, 143, 172, 239, 249, 184, 154, 39, 112, 65,
204, 42, 84, 38, 155, 151, 151, 16, 100, 87, 174, 162, 145, 147, 149, 186,
237, 145, 134, 144, 198, 235, 213, 163, 48, 230, 24, 47, 57, 71, 127, 0,
150, 219, 12, 81, 197, 150, 131, 13, 169, 63, 175, 184, 48, 235, 65, 243,
149, 200, 163, 254, 202, 114, 247, 67, 143, 250, 126, 228, 80, 130, 216, 214,
36, 2, 230, 33, 119, 125, 3, 142, 237, 100, 3, 152, 197, 174, 244, 129,
232, 30, 206, 199, 39, 210, 220, 43, 237, 221, 201, 54, 179, 42, 28, 133,
246, 203, 198, 177, 0, 28, 194, 85, 223, 109, 155, 147, 221, 60, 133, 108,
157, 254, 26, 75, 157, 185, 49, 142, 31, 137, 71, 43, 63, 64, 237, 148,
237, 172, 159, 160, 155, 254, 234, 224, 140, 193, 114, 140, 62, 109, 136, 39,
255, 8, 158, 146, 128, 49, 222, 96, 57, 209, 180, 249, 202, 127, 113, 231,
78, 178, 46, 33, 228, 215, 104, 31, 207, 186, 82, 41, 42, 39, 103, 119,
123, 133, 243, 254, 238, 156, 90, 186, 37, 212, 33, 107, 252, 51, 177, 36,
237, 76, 159, 245, 93, 214, 97, 56, 190, 38, 160, 94, 105, 222, 220, 158,
49, 16, 191, 52, 120, 87, 179, 2, 27, 144, 223, 230, 184, 6, 129, 227,
69, 47, 215, 181, 162, 139, 72, 200, 45, 163, 159, 62, 2, 221, 124, 40,
159, 242, 35, 208, 179, 166, 98, 67, 178, 68, 143, 225, 178, 146, 187, 159,
57, 66, 176, 192, 236, 250, 168, 224, 122, 43, 159, 120, 133, 165, 122, 64,
87, 74, 161, 241, 9, 87, 90, 24, 255, 113, 203, 220, 57, 139, 197, 159,
31, 151, 27, 140, 77, 162, 7, 27, 84, 228, 187, 220, 53, 126, 162, 242,
84, 181, 223, 103, 86, 177, 207, 31, 140, 18, 207, 256, 201, 166, 96, 23,
233, 103, 197, 84, 161, 75, 59, 149, 138, 154, 119, 92, 16, 53, 116, 97,
220, 114, 35, 45, 77, 209, 40, 196, 71, 22, 81, 178, 110, 14, 3, 180,
110, 129, 112, 47, 18, 61, 134, 78, 73, 79, 254, 232, 125, 180, 205, 54,
220, 119, 63, 89, 181, 52, 77, 109, 151, 77, 80, 207, 144, 25, 20, 6,
208, 47, 201, 206, 192, 14, 73, 176, 256, 201, 207, 87, 216, 60, 56, 73,
92, 243, 179, 113, 49, 59, 55, 168, 121, 137, 69, 154, 95, 57, 187, 47,
129, 4, 15, 92, 6, 116, 69, 196, 48, 134, 84, 81, 111, 56, 38, 176,
239, 6, 128, 72, 242, 134, 36, 221, 59, 48, 242, 68, 130, 110, 171, 89,
13, 220, 48, 29, 5, 75, 104, 233, 91, 129, 105, 162, 44, 113, 163, 163,
85, 147, 190, 111, 197, 80, 213, 153, 81, 68, 203, 33, 161, 165, 10, 61,
120, 252, 0, 205, 28, 42, 193, 64, 39, 37, 83, 175, 5, 218, 215, 174,
128, 121, 231, 11, 150, 145, 135, 197, 136, 91, 193, 5, 107, 88, 82, 6,
4, 188, 256, 70, 40, 2, 167, 57, 169, 203, 115, 254, 215, 172, 84, 80,
188, 167, 34, 137, 43, 243, 2, 79, 178, 38, 188, 135, 233, 194, 208, 13,
11, 151, 231, 196, 12, 122, 162, 56, 17, 114, 191, 207, 90, 132, 64, 238,
187, 6, 198, 176, 240, 88, 118, 236, 15, 226, 166, 22, 193, 229, 82, 246,
213, 64, 37, 63, 31, 243, 252, 37, 156, 38, 175, 204, 138, 141, 211, 82,
106, 217, 97, 139, 153, 56, 129, 218, 158, 9, 83, 26, 87, 112, 71, 21,
250, 5, 65, 141, 68, 116, 231, 113, 10, 218, 99, 205, 201, 92, 157, 4,
97, 46, 49, 220, 72, 139, 103, 171, 149, 129, 193, 19, 69, 245, 43, 31,
58, 68, 36, 195, 159, 22, 54, 34, 233, 141, 205, 100, 226, 96, 22, 192,
41, 231, 24, 79, 234, 138, 30, 120, 117, 216, 172, 197, 172, 107, 86, 29,
181, 151, 0, 6, 146, 186, 68, 55, 54, 58, 213, 182, 60, 231, 33, 232,
77, 210, 216, 154, 80, 51, 141, 122, 68, 148, 219, 122, 254, 48, 64, 175,
41, 115, 62, 243, 141, 81, 119, 121, 5, 68, 121, 88, 239, 29, 230, 90,
135, 159, 35, 223, 168, 112, 49, 37, 146, 60, 126, 134, 42, 145, 115, 90,
73, 133, 211, 86, 120, 141, 122, 241, 127, 56, 130, 36, 174, 75, 83, 246,
112, 45, 136, 194, 201, 115, 1, 156, 114, 167, 208, 12, 176, 147, 32, 170,
251, 100, 102, 220, 122, 210, 6, 49, 75, 201, 38, 105, 132, 135, 126, 102,
13, 121, 76, 228, 202, 20, 61, 213, 246, 13, 207, 42, 148, 168, 37, 253,
34, 94, 141, 185, 18, 234, 157, 109, 104, 64, 250, 125, 49, 236, 86, 48,
196, 77, 75, 237, 156, 103, 225, 19, 110, 229, 22, 68, 177, 93, 221, 181,
152, 153, 61, 108, 101, 74, 247, 195, 127, 216, 30, 166, 168, 61, 83, 229,
120, 156, 96, 120, 201, 124, 43, 27, 253, 250, 120, 143, 89, 235, 189, 243,
150, 7, 127, 119, 149, 244, 84, 185, 134, 34, 128, 193, 236, 234, 132, 117,
137, 32, 145, 184, 44, 121, 51, 76, 11, 228, 142, 251, 39, 77, 228, 251,
41, 58, 246, 107, 125, 187, 9, 240, 35, 8, 11, 162, 242, 220, 158, 163,
2, 184, 163, 227, 242, 2, 100, 101, 2, 78, 129, 34, 89, 28, 26, 157,
79, 31, 107, 250, 194, 156, 186, 69, 212, 66, 41, 180, 139, 42, 211, 253,
256, 239, 29, 129, 104, 248, 182, 68, 1, 189, 48, 226, 36, 229, 3, 158,
41, 53, 241, 22, 115, 174, 16, 163, 224, 19, 112, 219, 177, 233, 42, 27,
250, 134, 18, 28, 145, 122, 68, 34, 134, 31, 147, 17, 39, 188, 150, 76,
45, 42, 167, 249, 12, 16, 23, 182, 13, 79, 121, 3, 70, 197, 239, 44,
86, 177, 255, 81, 64, 171, 138, 131, 73, 110, 44, 201, 254, 198, 146, 91,
48, 9, 104, 31, 29, 161, 101, 31, 138, 180, 231, 233, 79, 137, 61, 236,
140, 15, 249, 218, 234, 119, 99, 195, 110, 137, 237, 207, 8, 31, 45, 24,
90, 155, 203, 253, 192, 203, 65, 176, 210, 171, 142, 214, 220, 122, 136, 237,
189, 186, 147, 40, 80, 254, 173, 33, 191, 46, 192, 26, 108, 255, 228, 205,
61, 76, 39, 107, 225, 126, 228, 182, 140, 251, 143, 134, 252, 168, 221, 8,
185, 85, 60, 233, 147, 244, 87, 137, 8, 140, 96, 80, 53, 45, 175, 160,
124, 189, 112, 37, 144, 19, 70, 17, 170, 242, 2, 3, 28, 95, 120, 199,
212, 43, 9, 117, 86, 151, 101, 241, 200, 145, 241, 19, 178, 69, 204, 197,
227, 166, 94, 7, 193, 45, 247, 234, 19, 187, 212, 212, 236, 125, 33, 95,
198, 121, 122, 103, 77, 155, 235, 49, 25, 237, 249, 11, 162, 7, 238, 24,
16, 150, 129, 25, 152, 17, 42, 67, 247, 162, 77, 154, 31, 133, 55, 137,
79, 119, 153, 10, 86, 28, 244, 186, 41, 169, 106, 44, 10, 49, 110, 179,
32, 133, 155, 244, 61, 70, 131, 168, 170, 39, 231, 252, 32, 69, 92, 238,
239, 35, 132, 136, 236, 167, 90, 32, 123, 88, 69, 22, 20, 89, 145, 166,
30, 118, 75, 4, 49, 31, 225, 54, 11, 50, 56, 191, 246, 1, 187, 33,
119, 107, 139, 68, 19, 240, 131, 55, 94, 113, 31, 252, 12, 179, 121, 2,
120, 252, 0, 76, 41, 80, 185, 42, 62, 121, 105, 159, 121, 109, 111, 98,
7, 118, 86, 29, 210, 70, 231, 179, 223, 229, 164, 70, 62, 47, 0, 206,
204, 178, 168, 120, 224, 166, 99, 25, 103, 63, 246, 224, 117, 204, 75, 124,
140, 133, 110, 110, 222, 88, 151, 118, 46, 37, 22, 143, 158, 40, 2, 50,
153, 94, 190, 199, 13, 198, 127, 211, 180, 90, 183, 98, 0, 142, 210, 154,
100, 187, 67, 231, 202, 100, 198, 235, 252, 160, 247, 124, 247, 14, 121, 221,
57, 88, 253, 243, 185, 89, 45, 249, 221, 194, 108, 175, 193, 119, 50, 141,
223, 133, 136, 64, 176, 250, 129, 100, 124, 94, 181, 159, 99, 185, 177, 240,
135, 42, 103, 52, 202, 208, 143, 186, 193, 103, 154, 237, 102, 88, 225, 161,
50, 188, 191, 109, 12, 87, 19, 227, 247, 183, 13, 52, 205, 170, 205, 146,
89, 160, 18, 105, 192, 73, 231, 225, 184, 157, 252, 220, 61, 59, 169, 183,
221, 20, 141, 20, 158, 101, 245, 7, 245, 225, 118, 137, 84, 55, 19, 27,
164, 110, 35, 25, 202, 94, 150, 46, 91, 152, 130, 1, 7, 46, 16, 237,
171, 109, 19, 200, 65, 38, 10, 213, 70, 96, 126, 226, 185, 225, 181, 46,
10, 165, 11, 123, 53, 158, 22, 147, 64, 22, 227, 69, 182, 237, 197, 37,
39, 49, 186, 223, 139, 128, 55, 36, 166, 178, 220, 20, 98, 172, 166, 253,
45, 0, 120, 180, 189, 185, 158, 159, 196, 6, 214, 79, 141, 52, 156, 107,
5, 109, 142, 159, 33, 64, 190, 133, 95, 132, 95, 202, 160, 63, 186, 23,
231, 107, 163, 33, 234, 15, 244, 77, 108, 49, 51, 7, 164, 87, 142, 99,
240, 202, 47, 256, 118, 190, 196, 178, 217, 42, 39, 153, 21, 192, 232, 202,
14, 82, 179, 64, 233, 4, 219, 10, 133, 78, 43, 144, 146, 216, 202, 81,
71, 252, 8, 201, 68, 256, 85, 233, 164, 88, 176, 30, 5, 152, 126, 179,
249, 84, 140, 190, 159, 54, 118, 98, 2, 159, 27, 133, 74, 121, 239, 196,
71, 149, 119, 135, 102, 20, 87, 112, 44, 75, 221, 3, 151, 158, 5, 98,
152, 25, 97, 106, 63, 171, 240, 79, 234, 240, 230, 92, 76, 70, 173, 196,
36, 225, 218, 133, 64, 240, 150, 41, 146, 66, 133, 51, 134, 73, 170, 238,
140, 90, 45, 89, 46, 147, 96, 169, 174, 174, 244, 151, 90, 40, 32, 74,
38, 154, 246, 57, 31, 14, 189, 151, 83, 243, 197, 183, 220, 185, 53, 225,
51, 106, 188, 208, 222, 248, 93, 13, 93, 215, 131, 25, 142, 185, 113, 222,
131, 215, 149, 50, 159, 85, 32, 5, 205, 192, 2, 227, 42, 214, 197, 42,
126, 182, 68, 123, 109, 36, 237, 179, 170, 199, 77, 256, 5, 128, 214, 243,
137, 177, 170, 253, 179, 180, 153, 236, 100, 196, 216, 231, 198, 37, 192, 80,
121, 221, 246, 1, 16, 246, 29, 78, 64, 148, 124, 38, 96, 125, 28, 20,
48, 51, 73, 187, 139, 208, 98, 253, 221, 188, 84, 129, 1, 205, 95, 205,
117, 79, 71, 126, 134, 237, 19, 184, 137, 125, 129, 178, 223, 54, 188, 112,
30, 7, 225, 228, 205, 184, 233, 87, 117, 22, 58, 10, 8, 42, 2, 114,
254, 19, 17, 13, 150, 92, 233, 179, 63, 12, 60, 171, 127, 35, 50, 5,
195, 113, 241, 25, 249, 184, 166, 44, 221, 35, 151, 116, 8, 54, 195, 89,
218, 186, 132, 5, 41, 89, 226, 177, 11, 41, 87, 172, 5, 23, 20, 59,
228, 94, 76, 33, 137, 43, 151, 221, 61, 232, 4, 120, 93, 217, 80, 228,
228, 6, 58, 25, 62, 84, 91, 48, 209, 20, 247, 243, 55, 106, 80, 79,
235, 34, 20, 180, 146, 2, 236, 13, 236, 206, 243, 222, 204, 83, 148, 213,
214, 117, 237, 98, 0, 90, 204, 168, 32, 41, 126, 67, 191, 74, 27, 255,
26, 75, 240, 113, 185, 105, 167, 154, 112, 67, 151, 63, 161, 134, 239, 176,
42, 87, 249, 130, 45, 242, 17, 100, 107, 120, 212, 218, 237, 76, 231, 162,
175, 172, 118, 155, 92, 36, 124, 17, 121, 71, 13, 9, 82, 126, 147, 142,
218, 148, 138, 80, 163, 106, 164, 123, 140, 129, 35, 42, 186, 154, 228, 214,
75, 73, 8, 253, 42, 153, 232, 164, 95, 24, 110, 90, 231, 197, 90, 196,
57, 164, 252, 181, 31, 7, 97, 256, 35, 77, 200, 212, 99, 179, 92, 227,
17, 180, 49, 176, 9, 188, 13, 182, 93, 44, 128, 219, 134, 92, 151, 6,
23, 126, 200, 109, 66, 30, 140, 180, 146, 134, 67, 200, 7, 9, 223, 168,
186, 221, 3, 154, 150, 165, 43, 53, 138, 27, 86, 213, 235, 160, 70, 2,
240, 20, 89, 212, 84, 141, 168, 246, 183, 227, 30, 167, 138, 185, 253, 83,
52, 143, 236, 94, 59, 65, 89, 218, 194, 157, 164, 156, 111, 95, 202, 168,
245, 256, 151, 28, 222, 194, 72, 130, 217, 134, 253, 77, 246, 100, 76, 32,
254, 174, 182, 193, 14, 237, 74, 1, 74, 26, 135, 216, 152, 208, 112, 38,
181, 62, 25, 71, 61, 234, 254, 97, 191, 23, 92, 256, 190, 205, 6, 16,
134, 147, 210, 219, 148, 59, 73, 185, 24, 247, 174, 143, 116, 220, 128, 144,
111, 126, 101, 98, 130, 136, 101, 102, 69, 127, 24, 168, 146, 226, 226, 207,
176, 122, 149, 254, 134, 196, 22, 151, 197, 21, 50, 205, 116, 154, 65, 116,
177, 224, 127, 77, 177, 159, 225, 69, 176, 54, 100, 104, 140, 8, 11, 126,
11, 188, 185, 159, 107, 16, 254, 142, 80, 28, 5, 157, 104, 57, 109, 82,
102, 80, 173, 242, 238, 207, 57, 105, 237, 160, 59, 189, 189, 199, 26, 11,
190, 156, 97, 118, 20, 12, 254, 189, 165, 147, 142, 199, 5, 213, 64, 133,
108, 217, 133, 60, 94, 28, 116, 136, 47, 165, 125, 42, 183, 143, 14, 129,
223, 70, 212, 205, 181, 180, 3, 201, 182, 46, 57, 104, 239, 60, 99, 181,
220, 231, 45, 79, 156, 89, 149, 143, 190, 103, 153, 61, 235, 73, 136, 20,
89, 243, 16, 130, 247, 141, 134, 93, 80, 68, 85, 84, 8, 72, 194, 4,
242, 110, 19, 133, 199, 70, 172, 92, 132, 254, 67, 74, 36, 94, 13, 90,
154, 184, 9, 109, 118, 243, 214, 71, 36, 95, 0, 90, 201, 105, 112, 215,
69, 196, 224, 210, 236, 242, 155, 211, 37, 134, 69, 113, 157, 97, 68, 26,
230, 149, 219, 180, 20, 76, 172, 145, 154, 40, 129, 8, 93, 56, 162, 124,
207, 233, 105, 19, 3, 183, 155, 134, 8, 244, 213, 78, 139, 88, 156, 37,
51, 152, 111, 102, 112, 250, 114, 252, 201, 241, 133, 24, 136, 153, 5, 90,
210, 197, 216, 24, 131, 17, 147, 246, 13, 86, 3, 253, 179, 237, 101, 114,
243, 191, 207, 2, 220, 133, 244, 53, 87, 125, 154, 158, 197, 20, 8, 83,
32, 191, 38, 241, 204, 22, 168, 59, 217, 123, 162, 82, 21, 50, 130, 89,
239, 253, 195, 56, 253, 74, 147, 125, 234, 199, 250, 28, 65, 193, 22, 237,
193, 94, 58, 229, 139, 176, 69, 42, 179, 164, 150, 168, 246, 214, 86, 174,
59, 117, 15, 19, 76, 37, 214, 238, 153, 226, 154, 45, 109, 114, 198, 107,
45, 70, 238, 196, 142, 252, 244, 71, 123, 136, 134, 188, 99, 132, 25, 42,
240, 0, 196, 33, 26, 124, 256, 145, 27, 102, 153, 35, 28, 132, 221, 167,
138, 133, 41, 170, 95, 224, 40, 139, 239, 153, 1, 106, 255, 106, 170, 163,
127, 44, 155, 232, 194, 119, 232, 117, 239, 143, 108, 41, 3, 9, 180, 256,
144, 113, 133, 200, 79, 69, 128, 216, 31, 50, 102, 209, 249, 136, 150, 154,
182, 51, 228, 39, 127, 142, 87, 15, 94, 92, 187, 245, 31, 236, 64, 58,
114, 11, 17, 166, 189, 152, 218, 34, 123, 39, 58, 37, 153, 91, 63, 121,
31, 34, 12, 254, 106, 96, 171, 14, 155, 247, 214, 69, 24, 98, 3, 204,
202, 194, 207, 30, 253, 44, 119, 70, 14, 96, 82, 250, 63, 6, 232, 38,
89, 144, 102, 191, 82, 254, 20, 222, 96, 162, 110, 6, 159, 58, 200, 226,
98, 128, 42, 70, 84, 247, 128, 211, 136, 54, 143, 166, 60, 118, 99, 218,
27, 193, 85, 81, 219, 223, 46, 41, 23, 233, 152, 222, 36, 236, 54, 181,
56, 50, 4, 207, 129, 92, 78, 88, 197, 251, 131, 105, 31, 172, 38, 131,
19, 204, 129, 47, 227, 106, 202, 183, 23, 6, 77, 224, 102, 147, 11, 218,
131, 132, 60, 192, 208, 223, 236, 23, 103, 115, 89, 18, 185, 171, 70, 174,
139, 0, 100, 160, 221, 11, 228, 60, 12, 122, 114, 12, 157, 235, 148, 57,
83, 62, 173, 131, 169, 126, 85, 99, 93, 243, 81, 80, 29, 245, 206, 82,
236, 227, 166, 14, 230, 213, 144, 97, 27, 111, 99, 164, 105, 150, 89, 111,
252, 118, 140, 232, 120, 183, 137, 213, 232, 157, 224, 33, 134, 118, 186, 80,
159, 2, 186, 193, 54, 242, 25, 237, 232, 249, 226, 213, 90, 149, 90, 160,
118, 69, 64, 37, 10, 183, 109, 246, 30, 52, 219, 69, 189, 26, 116, 220,
50, 244, 243, 243, 139, 137, 232, 98, 38, 45, 256, 143, 171, 101, 73, 238,
123, 45, 194, 167, 250, 123, 12, 29, 136, 237, 141, 21, 89, 96, 199, 44,
8, 214, 208, 17, 113, 41, 137, 26, 166, 155, 89, 85, 54, 58, 97, 160,
50, 239, 58, 71, 21, 157, 139, 12, 37, 198, 182, 131, 149, 134, 16, 204,
164, 181, 248, 166, 52, 216, 136, 201, 37, 255, 187, 240, 5, 101, 147, 231,
14, 163, 253, 134, 146, 216, 8, 54, 224, 90, 220, 195, 75, 215, 186, 58,
71, 204, 124, 105, 239, 53, 16, 85, 69, 163, 195, 223, 33, 38, 69, 88,
88, 203, 99, 55, 176, 13, 156, 204, 236, 99, 194, 134, 75, 247, 126, 129,
160, 124, 233, 206, 139, 144, 154, 45, 233, 51, 206, 61, 60, 55, 205, 107,
84, 108, 96, 188, 203, 31, 89, 20, 115, 144, 137, 90, 237, 78, 231, 185,
120, 217, 1, 176, 169, 30, 155, 176, 100, 113, 53, 42, 193, 108, 14, 121,
176, 158, 137, 92, 178, 44, 110, 249, 108, 234, 94, 101, 128, 12, 250, 173,
72, 202, 232, 66, 139, 152, 189, 18, 32, 197, 9, 238, 246, 55, 119, 183,
196, 119, 113, 247, 191, 100, 200, 245, 46, 16, 234, 112, 136, 116, 232, 48,
176, 108, 11, 237, 14, 153, 93, 177, 124, 72, 67, 121, 135, 143, 45, 18,
97, 251, 184, 172, 136, 55, 213, 8, 103, 12, 221, 212, 13, 160, 116, 91,
237, 127, 218, 190, 103, 131, 77, 82, 36, 100, 22, 252, 79, 69, 54, 26,
65, 182, 115, 142, 247, 20, 89, 81, 188, 244, 27, 120, 240, 248, 13, 230,
67, 133, 32, 201, 129, 87, 9, 245, 66, 88, 166, 34, 46, 184, 119, 218,
144, 235, 163, 40, 138, 134, 127, 217, 64, 227, 116, 67, 55, 202, 130, 48,
199, 42, 251, 112, 124, 153, 123, 194, 243, 49, 250, 12, 78, 157, 167, 134,
210, 73, 156, 102, 21, 88, 216, 123, 45, 11, 208, 18, 47, 187, 20, 43,
3, 180, 124, 2, 136, 176, 77, 111, 138, 139, 91, 225, 126, 8, 74, 255,
88, 192, 193, 239, 138, 204, 139, 194, 166, 130, 252, 184, 140, 168, 30, 177,
121, 98, 131, 124, 69, 171, 75, 49, 184, 34, 76, 122, 202, 115, 184, 253,
120, 182, 33, 251, 1, 74, 216, 217, 243, 168, 70, 162, 119, 158, 197, 198,
61, 89, 7, 5, 54, 199, 211, 170, 23, 226, 44, 247, 165, 195, 7, 225,
91, 23, 50, 15, 51, 208, 106, 94, 12, 31, 43, 112, 146, 139, 246, 182,
113, 1, 97, 15, 66, 2, 51, 76, 164, 184, 237, 200, 218, 176, 72, 98,
33, 135, 38, 147, 140, 229, 50, 94, 81, 187, 129, 17, 238, 168, 146, 203,
181, 99, 164, 3, 104, 98, 255, 189, 114, 142, 86, 102, 229, 102, 80, 129,
64, 84, 79, 161, 81, 156, 128, 111, 164, 197, 18, 15, 55, 196, 198, 191,
28, 113, 117, 96, 207, 253, 19, 158, 231, 13, 53, 130, 252, 211, 58, 180,
212, 142, 7, 219, 38, 81, 62, 109, 167, 113, 33, 56, 97, 185, 157, 130,
186, 129, 119, 182, 196, 26, 54, 110, 65, 170, 166, 236, 30, 22, 162, 0,
106, 12, 248, 33, 48, 72, 159, 17, 76, 244, 172, 132, 89, 171, 196, 76,
254, 166, 76, 218, 226, 3, 52, 220, 238, 181, 179, 144, 225, 23, 3, 166,
158, 35, 228, 154, 204, 23, 203, 71, 134, 189, 18, 168, 236, 141, 117, 138,
2, 132, 78, 57, 154, 21, 250, 196, 184, 40, 161, 40, 10, 178, 134, 120,
132, 123, 101, 82, 205, 121, 55, 140, 231, 56, 231, 71, 206, 246, 198, 150,
146, 192, 45, 105, 242, 1, 125, 18, 176, 46, 222, 122, 19, 80, 113, 133,
131, 162, 81, 51, 98, 168, 247, 161, 139, 39, 63, 162, 22, 153, 170, 92,
91, 130, 174, 200, 45, 112, 99, 164, 132, 184, 191, 186, 200, 167, 86, 145,
167, 227, 130, 44, 12, 158, 172, 249, 204, 17, 54, 249, 16, 200, 21, 174,
67, 223, 105, 201, 50, 36, 133, 203, 244, 131, 228, 67, 29, 195, 91, 91,
55, 107, 167, 154, 170, 137, 218, 183, 169, 61, 99, 175, 128, 23, 142, 183,
66, 255, 59, 187, 66, 85, 212, 109, 168, 82, 16, 43, 67, 139, 114, 176,
216, 255, 130, 94, 152, 79, 183, 64, 100, 23, 214, 82, 34, 230, 48, 15,
242, 130, 50, 241, 81, 32, 5, 125, 183, 182, 184, 99, 248, 109, 159, 210,
226, 61, 119, 129, 39, 149, 78, 214, 107, 78, 147, 124, 228, 18, 143, 188,
84, 180, 233, 119, 64, 39, 158, 133, 177, 168, 6, 150, 80, 117, 150, 56,
49, 72, 49, 37, 30, 242, 49, 142, 33, 156, 34, 44, 44, 72, 58, 22,
249, 46, 168, 80, 25, 196, 64, 174, 97, 179, 244, 134, 213, 105, 63, 151,
21, 90, 168, 90, 245, 28, 157, 65, 250, 232, 188, 27, 99, 160, 156, 127,
68, 193, 10, 80, 205, 36, 138, 229, 12, 223, 70, 169, 251, 41, 48, 94,
41, 177, 99, 256, 158, 0, 6, 83, 231, 191, 120, 135, 157, 146, 218, 213,
160, 7, 47, 234, 98, 211, 79, 225, 179, 95, 175, 105, 185, 79, 115, 0,
104, 14, 65, 124, 15, 188, 52, 9, 253, 27, 132, 137, 13, 127, 75, 238,
185, 253, 33, 8, 52, 157, 164, 68, 232, 188, 69, 28, 209, 233, 5, 129,
216, 90, 252, 212, 33, 200, 222, 9, 112, 15, 43, 36, 226, 114, 15, 249,
217, 8, 148, 22, 147, 23, 143, 67, 222, 116, 235, 250, 212, 210, 39, 142,
108, 64, 209, 83, 73, 66, 99, 34, 17, 29, 45, 151, 244, 114, 28, 241,
144, 208, 146, 179, 132, 89, 217, 198, 252, 219, 205, 165, 75, 107, 11, 173,
76, 6, 196, 247, 152, 216, 248, 91, 209, 178, 57, 250, 174, 60, 79, 123,
18, 135, 9, 241, 230, 159, 184, 68, 156, 251, 215, 9, 113, 234, 75, 235,
103, 194, 205, 129, 230, 45, 96, 73, 157, 20, 200, 212, 212, 228, 161, 7,
231, 228, 108, 43, 198, 87, 140, 140, 4, 182, 164, 3, 53, 104, 250, 213,
85, 38, 89, 61, 52, 187, 35, 204, 86, 249, 100, 71, 248, 213, 163, 215,
66, 106, 252, 129, 40, 111, 47, 24, 186, 221, 85, 205, 199, 237, 122, 181,
32, 46, 182, 135, 33, 251, 142, 34, 208, 242, 128, 255, 4, 234, 15, 33,
167, 222, 32, 186, 191, 34, 255, 244, 98, 240, 228, 204, 30, 142, 32, 70,
69, 83, 110, 151, 10, 243, 141, 21, 223, 69, 61, 37, 59, 209, 102, 114,
223, 33, 129, 254, 255, 103, 86, 247, 235, 72, 126, 177, 102, 226, 102, 30,
149, 221, 62, 247, 251, 120, 163, 173, 57, 202, 204, 24, 39, 106, 120, 143,
202, 176, 191, 147, 37, 38, 51, 133, 47, 245, 157, 132, 154, 71, 183, 111,
30, 180, 18, 202, 82, 96, 170, 91, 157, 181, 212, 140, 256, 8, 196, 121,
149, 79, 66, 127, 113, 78, 4, 197, 84, 256, 111, 222, 102, 63, 228, 104,
136, 223, 67, 193, 93, 154, 249, 83, 204, 101, 200, 234, 84, 252, 230, 195,
43, 140, 120, 242, 89, 63, 166, 233, 209, 94, 43, 170, 126, 5, 205, 78,
112, 80, 143, 151, 146, 248, 137, 203, 45, 183, 61, 1, 155, 8, 102, 59,
68, 212, 230, 61, 254, 191, 128, 223, 176, 123, 229, 27, 146, 120, 96, 165,
213, 12, 232, 40, 186, 225, 66, 105, 200, 195, 212, 110, 237, 238, 151, 19,
12, 171, 150, 82, 7, 228, 79, 52, 15, 78, 62, 43, 21, 154, 114, 21,
12, 212, 256, 232, 125, 127, 5, 51, 37, 252, 136, 13, 47, 195, 168, 191,
231, 55, 57, 251, 214, 116, 15, 86, 210, 41, 249, 242, 119, 27, 250, 203,
107, 69, 90, 43, 206, 154, 127, 54, 100, 78, 187, 54, 244, 177, 234, 167,
202, 136, 209, 171, 69, 114, 133, 173, 26, 139, 78, 141, 128, 32, 124, 39,
45, 218, 96, 68, 90, 44, 67, 62, 83, 190, 188, 256, 103, 42, 102, 64,
249, 0, 141, 11, 61, 69, 70, 66, 233, 237, 29, 200, 251, 157, 71, 51,
64, 133, 113, 76, 35, 125, 76, 137, 217, 145, 35, 69, 226, 180, 56, 249,
156, 163, 176, 237, 81, 54, 85, 169, 115, 211, 129, 70, 248, 40, 252, 192,
194, 101, 247, 8, 181, 124, 217, 191, 194, 93, 99, 127, 117, 177, 144, 151,
228, 121, 32, 11, 89, 81, 26, 29, 183, 76, 249, 132, 179, 70, 34, 102,
20, 66, 87, 63, 124, 205, 174, 177, 87, 219, 73, 218, 91, 87, 176, 72,
15, 211, 47, 61, 251, 165, 39, 247, 146, 70, 150, 57, 1, 212, 36, 162,
39, 38, 16, 216, 3, 50, 116, 200, 32, 234, 77, 181, 155, 19, 90, 188,
36, 6, 254, 46, 46, 203, 25, 230, 181, 196, 4, 151, 225, 65, 122, 216,
168, 86, 158, 131, 136, 16, 49, 102, 233, 64, 154, 88, 228, 52, 146, 69,
93, 157, 243, 121, 70, 209, 126, 213, 88, 145, 236, 65, 70, 96, 204, 47,
10, 200, 77, 8, 103, 150, 48, 153, 5, 37, 52, 235, 209, 31, 181, 126,
83, 142, 224, 140, 6, 32, 200, 171, 160, 179, 115, 229, 75, 194, 208, 39,
59, 223, 52, 247, 38, 197, 135, 1, 6, 189, 106, 114, 168, 5, 211, 222,
44, 63, 90, 160, 116, 172, 170, 133, 125, 138, 39, 131, 23, 178, 10, 214,
36, 93, 28, 59, 68, 17, 123, 25, 255, 184, 204, 102, 194, 214, 129, 94,
159, 245, 112, 141, 62, 11, 61, 197, 124, 221, 205, 11, 79, 71, 201, 54,
58, 150, 29, 121, 87, 46, 240, 201, 68, 20, 194, 209, 47, 152, 158, 174,
193, 164, 120, 255, 216, 165, 247, 58, 85, 130, 220, 23, 122, 223, 188, 98,
21, 70, 72, 170, 150, 237, 76, 143, 112, 238, 206, 146, 215, 110, 4, 250,
68, 44, 174, 177, 30, 98, 143, 241, 180, 127, 113, 48, 0, 1, 179, 199,
59, 106, 201, 114, 29, 86, 173, 133, 217, 44, 200, 141, 107, 172, 16, 60,
82, 58, 239, 94, 141, 234, 186, 235, 109, 173, 249, 139, 141, 59, 100, 248,
84, 144, 49, 160, 51, 207, 164, 103, 74, 97, 146, 202, 193, 125, 168, 134,
236, 111, 135, 121, 59, 145, 168, 200, 181, 173, 109, 2, 255, 6, 9, 245,
90, 202, 214, 143, 121, 65, 85, 232, 132, 77, 228, 84, 26, 54, 184, 15,
161, 29, 177, 79, 43, 0, 156, 184, 163, 165, 62, 90, 179, 93, 45, 239,
1, 16, 120, 189, 127, 47, 74, 166, 20, 214, 233, 226, 89, 217, 229, 26,
156, 53, 162, 60, 21, 3, 192, 72, 111, 51, 53, 101, 181, 208, 88, 82,
179, 160, 219, 113, 240, 108, 43, 224, 162, 147, 62, 14, 95, 81, 205, 4,
160, 177, 225, 115, 29, 69, 235, 168, 148, 29, 128, 114, 124, 129, 172, 165,
215, 231, 214, 86, 160, 44, 157, 91, 248, 183, 73, 164, 56, 181, 162, 92,
141, 118, 127, 240, 196, 77, 0, 9, 244, 79, 250, 100, 195, 25, 255, 85,
94, 35, 212, 137, 107, 34, 110, 20, 200, 104, 17, 32, 231, 43, 150, 159,
231, 216, 223, 190, 226, 109, 162, 197, 87, 92, 224, 11, 111, 73, 60, 225,
238, 73, 246, 169, 19, 217, 119, 38, 121, 118, 70, 82, 99, 241, 110, 67,
31, 76, 146, 215, 124, 240, 31, 103, 139, 224, 75, 160, 31, 78, 93, 4,
64, 9, 103, 223, 6, 227, 119, 85, 116, 81, 21, 43, 46, 206, 234, 132,
85, 99, 22, 131, 135, 97, 86, 13, 234, 188, 21, 14, 89, 169, 207, 238,
219, 177, 190, 72, 157, 41, 114, 140, 92, 141, 186, 1, 63, 107, 225, 184,
118, 150, 153, 254, 241, 106, 120, 210, 104, 144, 151, 161, 88, 206, 125, 164,
15, 211, 173, 49, 146, 241, 71, 36, 58, 201, 46, 27, 33, 187, 91, 162,
117, 19, 210, 213, 187, 97, 193, 50, 190, 114, 217, 60, 61, 167, 207, 213,
213, 53, 135, 34, 156, 91, 115, 119, 46, 99, 242, 1, 90, 52, 198, 227,
201, 91, 216, 146, 210, 82, 121, 38, 73, 133, 182, 193, 132, 148, 246, 75,
109, 157, 179, 113, 176, 134, 205, 159, 148, 58, 103, 171, 132, 156, 133, 147,
161, 231, 39, 100, 175, 97, 125, 28, 183, 129, 135, 191, 202, 181, 29, 218,
43, 104, 148, 203, 189, 204, 4, 182, 169, 1, 134, 122, 141, 202, 13, 187,
177, 112, 162, 35, 231, 6, 8, 241, 99, 6, 191, 45, 113, 113, 101, 104};
// The S-Box we use for further linearity breaking.
// We created it by taking the digits of decimal expansion of e.
// The code that created it can be found in 'ProduceRandomSBox.c'.
unsigned char SBox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x7d, 0xd1, 0x70, 0x0b, 0xfa, 0x39, 0x18, 0xc3, 0xf3, 0xbb, 0xa7, 0xd4, 0x84, 0x25, 0x3b, 0x3c, // 0
0x2c, 0x15, 0x69, 0x9a, 0xf9, 0x27, 0xfb, 0x02, 0x52, 0xba, 0xa8, 0x4b, 0x20, 0xb5, 0x8b, 0x3a, // 1
0x88, 0x8e, 0x26, 0xcb, 0x71, 0x5e, 0xaf, 0xad, 0x0c, 0xac, 0xa1, 0x93, 0xc6, 0x78, 0xce, 0xfc, // 2
0x2a, 0x76, 0x17, 0x1f, 0x62, 0xc2, 0x2e, 0x99, 0x11, 0x37, 0x65, 0x40, 0xfd, 0xa0, 0x03, 0xc1, // 3
0xca, 0x48, 0xe2, 0x9b, 0x81, 0xe4, 0x1c, 0x01, 0xec, 0x68, 0x7a, 0x5a, 0x50, 0xf8, 0x0e, 0xa3, // 4
0xe8, 0x61, 0x2b, 0xa2, 0xeb, 0xcf, 0x8c, 0x3d, 0xb4, 0x95, 0x13, 0x08, 0x46, 0xab, 0x91, 0x7b, // 5
0xea, 0x55, 0x67, 0x9d, 0xdd, 0x29, 0x6a, 0x8f, 0x9f, 0x22, 0x4e, 0xf2, 0x57, 0xd2, 0xa9, 0xbd, // 6
0x38, 0x16, 0x5f, 0x4c, 0xf7, 0x9e, 0x1b, 0x2f, 0x30, 0xc7, 0x41, 0x24, 0x5c, 0xbf, 0x05, 0xf6, // 7
0x0a, 0x31, 0xa5, 0x45, 0x21, 0x33, 0x6b, 0x6d, 0x6c, 0x86, 0xe1, 0xa4, 0xe6, 0x92, 0x9c, 0xdf, // 8
0xe7, 0xbe, 0x28, 0xe3, 0xfe, 0x06, 0x4d, 0x98, 0x80, 0x04, 0x96, 0x36, 0x3e, 0x14, 0x4a, 0x34, // 9
0xd3, 0xd5, 0xdb, 0x44, 0xcd, 0xf5, 0x54, 0xdc, 0x89, 0x09, 0x90, 0x42, 0x87, 0xff, 0x7e, 0x56, // A
0x5d, 0x59, 0xd7, 0x23, 0x75, 0x19, 0x97, 0x73, 0x83, 0x64, 0x53, 0xa6, 0x1e, 0xd8, 0xb0, 0x49, // B
0x3f, 0xef, 0xbc, 0x7f, 0x43, 0xf0, 0xc9, 0x72, 0x0f, 0x63, 0x79, 0x2d, 0xc0, 0xda, 0x66, 0xc8, // C
0x32, 0xde, 0x47, 0x07, 0xb8, 0xe9, 0x1d, 0xc4, 0x85, 0x74, 0x82, 0xcc, 0x60, 0x51, 0x77, 0x0d, // D
0xaa, 0x35, 0xed, 0x58, 0x7c, 0x5b, 0xb9, 0x94, 0x6e, 0x8d, 0xb1, 0xc5, 0xb7, 0xee, 0xb6, 0xae, // E
0x10, 0xe0, 0xd6, 0xd9, 0xe5, 0x4f, 0xf1, 0x12, 0x00, 0xd0, 0xf4, 0x1a, 0x6f, 0x8a, 0xb3, 0xb2 }; // F
///////////////////////////////////////////////////////////////////////////////////////////////
//
// Helper functions definition portion.
//
///////////////////////////////////////////////////////////////////////////////////////////////
// Translates an input array with values in base 257 to output array with values in base 256.
// Returns the carry bit.
//
// Parameters:
// - input: the input array of size EIGHTH_N. Each value in the array is a number in Z_257.
// The MSB is assumed to be the last one in the array.
// - output: the input array encoded in base 256.
//
// Returns:
// - The carry bit (MSB).
swift_int16_t TranslateToBase256(swift_int32_t input[EIGHTH_N], unsigned char output[EIGHTH_N]);
// Translates an input integer into the range (-FIELD_SIZE / 2) <= result <= (FIELD_SIZE / 2).
//
// Parameters:
// - x: the input integer.
//
// Returns:
// - The result, which equals (x MOD FIELD_SIZE), such that |result| <= (FIELD_SIZE / 2).
int Center(int x);
// Calculates bit reversal permutation.
//
// Parameters:
// - input: the input to reverse.
// - numOfBits: the number of bits in the input to reverse.
//
// Returns:
// - The resulting number, which is obtained from the input by reversing its bits.
int ReverseBits(int input, int numOfBits);
// Initializes the FFT fast lookup table.
// Shall be called only once.
void InitializeSWIFFTX();
// Calculates the FFT.
//
// Parameters:
// - input: the input to the FFT.
// - output: the resulting output.
void FFT(const unsigned char input[EIGHTH_N], swift_int32_t *output);
///////////////////////////////////////////////////////////////////////////////////////////////
// Helper functions implementation portion.
///////////////////////////////////////////////////////////////////////////////////////////////
swift_int16_t TranslateToBase256(swift_int32_t input[EIGHTH_N], unsigned char output[EIGHTH_N])
{
swift_int32_t pairs[EIGHTH_N / 2];
int i;
for (i = 0; i < EIGHTH_N; i += 2)
{
// input[i] + 257 * input[i + 1]
pairs[i >> 1] = input[i] + input[i + 1] + (input[i + 1] << 8);
}
for (i = (EIGHTH_N / 2) - 1; i > 0; --i)
{
int j;
for (j = i - 1; j < (EIGHTH_N / 2) - 1; ++j)
{
// pairs[j + 1] * 513, because 257^2 = 513 % 256^2.
register swift_int32_t temp = pairs[j] + pairs[j + 1] + (pairs[j + 1] << 9);
pairs[j] = temp & 0xffff;
pairs[j + 1] += (temp >> 16);
}
}
for (i = 0; i < EIGHTH_N; i += 2)
{
output[i] = (unsigned char) (pairs[i >> 1] & 0xff);
output[i + 1] = (unsigned char) ((pairs[i >> 1] >> 8) & 0xff);
}
return (pairs[EIGHTH_N/2 - 1] >> 16);
}
int Center(int x)
{
int result = x % FIELD_SIZE;
if (result > (FIELD_SIZE / 2))
result -= FIELD_SIZE;
if (result < (FIELD_SIZE / -2))
result += FIELD_SIZE;
return result;
}
int ReverseBits(int input, int numOfBits)
{
register int reversed = 0;
for (input |= numOfBits; input > 1; input >>= 1)
reversed = (reversed << 1) | (input & 1);
return reversed;
}
void InitializeSWIFFTX()
{
int i, j, k, x;
// The powers of OMEGA
int omegaPowers[2 * N];
omegaPowers[0] = 1;
if (wasSetupDone)
return;
for (i = 1; i < (2 * N); ++i)
{
omegaPowers[i] = Center(omegaPowers[i - 1] * OMEGA);
}
for (i = 0; i < (N / W); ++i)
{
for (j = 0; j < W; ++j)
{
multipliers[(i << 3) + j] = omegaPowers[ReverseBits(i, N / W) * (2 * j + 1)];
}
}
for (x = 0; x < 256; ++x)
{
for (j = 0; j < 8; ++j)
{
register int temp = 0;
for (k = 0; k < 8; ++k)
{
temp += omegaPowers[(EIGHTH_N * (2 * j + 1) * ReverseBits(k, W)) % (2 * N)]
* ((x >> k) & 1);
}
fftTable[(x << 3) + j] = Center(temp);
}
}
wasSetupDone = true;
}
void FFT(const unsigned char input[EIGHTH_N], swift_int32_t *output)
{
register swift_int16_t *mult = multipliers;
register swift_int32_t F0, F1, F2, F3, F4, F5, F6, F7, F8, F9,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29,
F30, F31, F32, F33, F34, F35, F36, F37, F38, F39,
F40, F41, F42, F43, F44, F45, F46, F47, F48, F49,
F50, F51, F52, F53, F54, F55, F56, F57, F58, F59,
F60, F61, F62, F63;
// First loop unrolling:
register swift_int16_t *table = &(fftTable[input[0] << 3]);
F0 = mult[0] * table[0];
F8 = mult[1] * table[1];
F16 = mult[2] * table[2];
F24 = mult[3] * table[3];
F32 = mult[4] * table[4];
F40 = mult[5] * table[5];
F48 = mult[6] * table[6];
F56 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[1] << 3]);
F1 = mult[0] * table[0];
F9 = mult[1] * table[1];
F17 = mult[2] * table[2];
F25 = mult[3] * table[3];
F33 = mult[4] * table[4];
F41 = mult[5] * table[5];
F49 = mult[6] * table[6];
F57 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[2] << 3]);
F2 = mult[0] * table[0];
F10 = mult[1] * table[1];
F18 = mult[2] * table[2];
F26 = mult[3] * table[3];
F34 = mult[4] * table[4];
F42 = mult[5] * table[5];
F50 = mult[6] * table[6];
F58 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[3] << 3]);
F3 = mult[0] * table[0];
F11 = mult[1] * table[1];
F19 = mult[2] * table[2];
F27 = mult[3] * table[3];
F35 = mult[4] * table[4];
F43 = mult[5] * table[5];
F51 = mult[6] * table[6];
F59 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[4] << 3]);
F4 = mult[0] * table[0];
F12 = mult[1] * table[1];
F20 = mult[2] * table[2];
F28 = mult[3] * table[3];
F36 = mult[4] * table[4];
F44 = mult[5] * table[5];
F52 = mult[6] * table[6];
F60 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[5] << 3]);
F5 = mult[0] * table[0];
F13 = mult[1] * table[1];
F21 = mult[2] * table[2];
F29 = mult[3] * table[3];
F37 = mult[4] * table[4];
F45 = mult[5] * table[5];
F53 = mult[6] * table[6];
F61 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[6] << 3]);
F6 = mult[0] * table[0];
F14 = mult[1] * table[1];
F22 = mult[2] * table[2];
F30 = mult[3] * table[3];
F38 = mult[4] * table[4];
F46 = mult[5] * table[5];
F54 = mult[6] * table[6];
F62 = mult[7] * table[7];
mult += 8;
table = &(fftTable[input[7] << 3]);
F7 = mult[0] * table[0];
F15 = mult[1] * table[1];
F23 = mult[2] * table[2];
F31 = mult[3] * table[3];
F39 = mult[4] * table[4];
F47 = mult[5] * table[5];
F55 = mult[6] * table[6];
F63 = mult[7] * table[7];
// Second loop unrolling:
// Iteration 0:
ADD_SUB(F0, F1);
ADD_SUB(F2, F3);
ADD_SUB(F4, F5);
ADD_SUB(F6, F7);
F3 <<= 4;
F7 <<= 4;
ADD_SUB(F0, F2);
ADD_SUB(F1, F3);
ADD_SUB(F4, F6);
ADD_SUB(F5, F7);
F5 <<= 2;
F6 <<= 4;
F7 <<= 6;
ADD_SUB(F0, F4);
ADD_SUB(F1, F5);
ADD_SUB(F2, F6);
ADD_SUB(F3, F7);
output[0] = Q_REDUCE(F0);
output[8] = Q_REDUCE(F1);
output[16] = Q_REDUCE(F2);
output[24] = Q_REDUCE(F3);
output[32] = Q_REDUCE(F4);
output[40] = Q_REDUCE(F5);
output[48] = Q_REDUCE(F6);
output[56] = Q_REDUCE(F7);
// Iteration 1:
ADD_SUB(F8, F9);
ADD_SUB(F10, F11);
ADD_SUB(F12, F13);
ADD_SUB(F14, F15);
F11 <<= 4;
F15 <<= 4;
ADD_SUB(F8, F10);
ADD_SUB(F9, F11);
ADD_SUB(F12, F14);
ADD_SUB(F13, F15);
F13 <<= 2;
F14 <<= 4;
F15 <<= 6;
ADD_SUB(F8, F12);
ADD_SUB(F9, F13);
ADD_SUB(F10, F14);
ADD_SUB(F11, F15);
output[1] = Q_REDUCE(F8);
output[9] = Q_REDUCE(F9);
output[17] = Q_REDUCE(F10);
output[25] = Q_REDUCE(F11);
output[33] = Q_REDUCE(F12);
output[41] = Q_REDUCE(F13);
output[49] = Q_REDUCE(F14);
output[57] = Q_REDUCE(F15);
// Iteration 2:
ADD_SUB(F16, F17);
ADD_SUB(F18, F19);
ADD_SUB(F20, F21);
ADD_SUB(F22, F23);
F19 <<= 4;
F23 <<= 4;
ADD_SUB(F16, F18);
ADD_SUB(F17, F19);
ADD_SUB(F20, F22);
ADD_SUB(F21, F23);
F21 <<= 2;
F22 <<= 4;
F23 <<= 6;
ADD_SUB(F16, F20);
ADD_SUB(F17, F21);
ADD_SUB(F18, F22);
ADD_SUB(F19, F23);
output[2] = Q_REDUCE(F16);
output[10] = Q_REDUCE(F17);
output[18] = Q_REDUCE(F18);
output[26] = Q_REDUCE(F19);
output[34] = Q_REDUCE(F20);
output[42] = Q_REDUCE(F21);
output[50] = Q_REDUCE(F22);
output[58] = Q_REDUCE(F23);
// Iteration 3:
ADD_SUB(F24, F25);
ADD_SUB(F26, F27);
ADD_SUB(F28, F29);
ADD_SUB(F30, F31);
F27 <<= 4;
F31 <<= 4;
ADD_SUB(F24, F26);
ADD_SUB(F25, F27);
ADD_SUB(F28, F30);
ADD_SUB(F29, F31);
F29 <<= 2;
F30 <<= 4;
F31 <<= 6;
ADD_SUB(F24, F28);
ADD_SUB(F25, F29);
ADD_SUB(F26, F30);
ADD_SUB(F27, F31);
output[3] = Q_REDUCE(F24);
output[11] = Q_REDUCE(F25);
output[19] = Q_REDUCE(F26);
output[27] = Q_REDUCE(F27);
output[35] = Q_REDUCE(F28);
output[43] = Q_REDUCE(F29);
output[51] = Q_REDUCE(F30);
output[59] = Q_REDUCE(F31);
// Iteration 4:
ADD_SUB(F32, F33);
ADD_SUB(F34, F35);
ADD_SUB(F36, F37);
ADD_SUB(F38, F39);
F35 <<= 4;
F39 <<= 4;
ADD_SUB(F32, F34);
ADD_SUB(F33, F35);
ADD_SUB(F36, F38);
ADD_SUB(F37, F39);
F37 <<= 2;
F38 <<= 4;
F39 <<= 6;
ADD_SUB(F32, F36);
ADD_SUB(F33, F37);
ADD_SUB(F34, F38);
ADD_SUB(F35, F39);
output[4] = Q_REDUCE(F32);
output[12] = Q_REDUCE(F33);
output[20] = Q_REDUCE(F34);
output[28] = Q_REDUCE(F35);
output[36] = Q_REDUCE(F36);
output[44] = Q_REDUCE(F37);
output[52] = Q_REDUCE(F38);
output[60] = Q_REDUCE(F39);
// Iteration 5:
ADD_SUB(F40, F41);
ADD_SUB(F42, F43);
ADD_SUB(F44, F45);
ADD_SUB(F46, F47);
F43 <<= 4;
F47 <<= 4;
ADD_SUB(F40, F42);
ADD_SUB(F41, F43);
ADD_SUB(F44, F46);
ADD_SUB(F45, F47);
F45 <<= 2;
F46 <<= 4;
F47 <<= 6;
ADD_SUB(F40, F44);
ADD_SUB(F41, F45);
ADD_SUB(F42, F46);
ADD_SUB(F43, F47);
output[5] = Q_REDUCE(F40);
output[13] = Q_REDUCE(F41);
output[21] = Q_REDUCE(F42);
output[29] = Q_REDUCE(F43);
output[37] = Q_REDUCE(F44);
output[45] = Q_REDUCE(F45);
output[53] = Q_REDUCE(F46);
output[61] = Q_REDUCE(F47);
// Iteration 6:
ADD_SUB(F48, F49);
ADD_SUB(F50, F51);
ADD_SUB(F52, F53);
ADD_SUB(F54, F55);
F51 <<= 4;
F55 <<= 4;
ADD_SUB(F48, F50);
ADD_SUB(F49, F51);
ADD_SUB(F52, F54);
ADD_SUB(F53, F55);
F53 <<= 2;
F54 <<= 4;
F55 <<= 6;
ADD_SUB(F48, F52);
ADD_SUB(F49, F53);
ADD_SUB(F50, F54);
ADD_SUB(F51, F55);
output[6] = Q_REDUCE(F48);
output[14] = Q_REDUCE(F49);
output[22] = Q_REDUCE(F50);
output[30] = Q_REDUCE(F51);
output[38] = Q_REDUCE(F52);
output[46] = Q_REDUCE(F53);
output[54] = Q_REDUCE(F54);
output[62] = Q_REDUCE(F55);
// Iteration 7:
ADD_SUB(F56, F57);
ADD_SUB(F58, F59);
ADD_SUB(F60, F61);
ADD_SUB(F62, F63);
F59 <<= 4;
F63 <<= 4;
ADD_SUB(F56, F58);
ADD_SUB(F57, F59);
ADD_SUB(F60, F62);
ADD_SUB(F61, F63);
F61 <<= 2;
F62 <<= 4;
F63 <<= 6;
ADD_SUB(F56, F60);
ADD_SUB(F57, F61);
ADD_SUB(F58, F62);
ADD_SUB(F59, F63);
output[7] = Q_REDUCE(F56);
output[15] = Q_REDUCE(F57);
output[23] = Q_REDUCE(F58);
output[31] = Q_REDUCE(F59);
output[39] = Q_REDUCE(F60);
output[47] = Q_REDUCE(F61);
output[55] = Q_REDUCE(F62);
output[63] = Q_REDUCE(F63);
}
// Calculates the FFT part of SWIFFT.
// We divided the SWIFFT calculation into two, because that way we could save 2 computations of
// the FFT part, since in the first stage of SWIFFTX the difference between the first 3 SWIFFTs
// is only the A's part.
//
// Parameters:
// - input: the input to FFT.
// - m: the input size divided by 8. The function performs m FFTs.
// - output: will store the result.
void SWIFFTFFT(const unsigned char *input, int m, swift_int32_t *output)
{
int i;
for (i = 0;
i < m;
i++, input += EIGHTH_N, output += N)
{
FFT(input, output);
}
}
// Calculates the 'sum' part of SWIFFT, including the base change at the end.
// We divided the SWIFFT calculation into two, because that way we could save 2 computations of
// the FFT part, since in the first stage of SWIFFTX the difference between the first 3 SWIFFTs
// is only the A's part.
//
// Parameters:
// - input: the input. Of size 64 * m.
// - m: the input size divided by 64.
// - output: will store the result.
// - a: the coefficients in the sum. Of size 64 * m.
void SWIFFTSum(const swift_int32_t *input, int m, unsigned char *output, const swift_int16_t *a)
{
int i, j;
swift_int32_t result[N];
register swift_int16_t carry = 0;
for (j = 0; j < N; ++j)
{
register swift_int32_t sum = 0;
const register swift_int32_t *f = input + j;
const register swift_int16_t *k = a + j;
for (i = 0; i < m; i++, f += N,k += N)
{
sum += (*f) * (*k);
}
result[j] = sum;
}
for (j = 0; j < N; ++j)
{
result[j] = ((FIELD_SIZE << 22) + result[j]) % FIELD_SIZE;
}
for (j = 0; j < 8; ++j)
{
int register carryBit = TranslateToBase256(result + (j << 3), output + (j << 3));
carry |= carryBit << j;
}
output[N] = carry;
}
void ComputeSingleSWIFFTX(unsigned char input[SWIFFTX_INPUT_BLOCK_SIZE],
unsigned char output[SWIFFTX_OUTPUT_BLOCK_SIZE],
bool doSmooth)
{
int i;
// Will store the result of the FFT parts:
swift_int32_t fftOut[N * M];
unsigned char intermediate[N * 3 + 8];
unsigned char carry0,carry1,carry2;
// Do the three SWIFFTS while remembering the three carry bytes (each carry byte gets
// overriden by the following SWIFFT):
// 1. Compute the FFT of the input - the common part for the first 3 SWIFFTs:
SWIFFTFFT(input, M, fftOut);
// 2. Compute the sums of the 3 SWIFFTs, each using a different set of coefficients:
// 2a. The first SWIFFT:
SWIFFTSum(fftOut, M, intermediate, As);
// Remember the carry byte:
carry0 = intermediate[N];
// 2b. The second one:
SWIFFTSum(fftOut, M, intermediate + N, As + (M * N));
carry1 = intermediate[2 * N];
// 2c. The third one:
SWIFFTSum(fftOut, M, intermediate + (2 * N), As + 2 * (M * N));
carry2 = intermediate[3 * N];
//2d. Put three carry bytes in their place
intermediate[3 * N] = carry0;
intermediate[(3 * N) + 1] = carry1;
intermediate[(3 * N) + 2] = carry2;
// Padding intermediate output with 5 zeroes.
memset(intermediate + (3 * N) + 3, 0, 5);
// Apply the S-Box:
for (i = 0; i < (3 * N) + 8; ++i)
{
intermediate[i] = SBox[intermediate[i]];
}
// 3. The final and last SWIFFT:
SWIFFTFFT(intermediate, 3 * (N/8) + 1, fftOut);
SWIFFTSum(fftOut, 3 * (N/8) + 1, output, As);
if (doSmooth)
{
unsigned char sum[N];
register int i, j;
memset(sum, 0, N);
for (i = 0; i < (N + 1) * 8; ++i)
{
register const swift_int16_t *AsRow;
register int AShift;
if (!(output[i >> 3] & (1 << (i & 7))))
{
continue;
}
AsRow = As + N * M + (i & ~(N - 1)) ;
AShift = i & 63;
for (j = AShift; j < N; ++j)
{
sum[j] += AsRow[j - AShift];
}
for(j = 0; j < AShift; ++j)
{
sum[j] -= AsRow[N - AShift + j];
}
}
for (i = 0; i < N; ++i)
{
output[i] = sum[i];
}
output[N] = 0;
}
}