// RainForest hash algorithm // Author: Bill Schneider // Date: Feb 13th, 2018 // // RainForest uses native integer operations which are extremely fast on // modern 64-bit processors, significantly slower on 32-bit processors such // as GPUs, and extremely slow if at all implementable on FPGAs and ASICs. // It makes an intensive use of the L1 cache to maintain a heavy intermediary // state favoring modern CPUs compared to GPUs (small L1 cache shared by many // shaders) or FPGAs (very hard to implement the required low-latency cache) // when scanning ranges for nonces. The purpose is to create a fair balance // between all mining equipments, from mobile phones to extreme performance // GPUs and to rule out farming factories relying on ASICs and FPGAs. The // CRC32 instruction is used a lot as it is extremely fast on low-power ARM // chips and allows such devices to rival high-end PCs mining performance. // // Tests on various devices have shown the following performance : // +--------------------------------------------------------------------------+ // | CPU/GPU Clock Threads Full hash Nonce scan Watts Cost | // | (MHz) (80 bytes) (4 bytes) total | // | Core i7-6700k 4000 8 390 kH/s 1642 kH/s 200 ~$350+PC | // | Radeon RX560 1300 1024 1100 kH/s 1650 kH/s 300 ~$180+PC | // | RK3368 (8*A53) 1416 8 534 kH/s 1582 kH/s 6 $60 (Geekbox) | // +--------------------------------------------------------------------------+ // // Build instructions on Ubuntu 16.04 : // - on x86: use gcc -march=native or -maes to enable AES-NI // - on ARMv8: use gcc -march=native or -march=armv8-a+crypto+crc to enable // CRC32 and AES extensions. // // Note: always use the same options to build all files! #include #include #include #include //#define DEBUG_ALGO /* Rijndael's substitution box for sub_bytes step */ static uint8_t SBOX[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; /*--- The parts below are not used when crypto extensions are available ---*/ /* Use -march=armv8-a+crypto on ARMv8 to use crypto extensions */ /* Use -maes on x86_64 to use AES-NI */ #if defined(RF_NOASM) || (!defined(__aarch64__) || !defined(__ARM_FEATURE_CRYPTO)) && (!defined(__x86_64__) || !defined(__AES__)) /* shifts to do for shift_rows step */ static uint8_t shifts[16] = { 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11 }; /* add the round key to the state with simple XOR operation */ static void add_round_key(uint8_t * state, uint8_t * rkey) { uint8_t i; for (i = 0; i < 16; i++) state[i] ^= rkey[i]; } /* substitute all bytes using Rijndael's substitution box */ static void sub_bytes(uint8_t * state) { uint8_t i; for (i = 0; i < 16; i++) state[i] = SBOX[state[i]]; } /* imagine the state not as 1-dimensional, but a 4x4 grid; * this step shifts the rows of this grid around */ static void shift_rows(uint8_t * state) { uint8_t temp[16]; uint8_t i; for (i = 0; i < 16; i++) { temp[i] = state[shifts[i]]; } for (i = 0; i < 16; i++) { state[i] = temp[i]; } } /* mix columns */ static void mix_columns(uint8_t * state) { uint8_t a[4]; uint8_t b[4]; uint8_t h, i, k; for (k = 0; k < 4; k++) { for (i = 0; i < 4; i++) { a[i] = state[i + 4 * k]; h = state[i + 4 * k] & 0x80; /* hi bit */ b[i] = state[i + 4 * k] << 1; if (h == 0x80) { b[i] ^= 0x1b; /* Rijndael's Galois field */ } } state[4 * k] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; state[1 + 4 * k] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; state[2 + 4 * k] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; state[3 + 4 * k] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; } } #endif // (!defined(__aarch64__) || !defined(__ARM_FEATURE_CRYPTO)) && (!defined(__x86_64__) || !defined(__AES__)) /* key schedule stuff */ /* simple function to rotate 4 byte array */ static inline uint32_t rotate32(uint32_t in) { #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ in = (in >> 8) | (in << 24); #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ in = (in << 8) | (in >> 24); #else uint8_t *b = (uint8_t *)&in, temp = b[0]; b[0] = b[1]; b[1] = b[2]; b[2] = b[3]; b[3] = temp; #endif return in; } /* key schedule core operation */ static inline uint32_t sbox(uint32_t in, uint8_t n) { in = (SBOX[in & 255]) | (SBOX[(in >> 8) & 255] << 8) | (SBOX[(in >> 16) & 255] << 16) | (SBOX[(in >> 24) & 255] << 24); #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ in ^= n; #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ in ^= n << 24; #else *(uint8_t *)&in ^= n; #endif return in; } // this version is optimized for exactly two rounds. // _state_ must be 16-byte aligned. static void aes2r_encrypt(uint8_t * state, uint8_t * key) { uint32_t key_schedule[12] __attribute__((aligned(16))); uint32_t t; /* initialize key schedule; its first 16 bytes are the key */ key_schedule[0] = ((uint32_t *)key)[0]; key_schedule[1] = ((uint32_t *)key)[1]; key_schedule[2] = ((uint32_t *)key)[2]; key_schedule[3] = ((uint32_t *)key)[3]; t = key_schedule[3]; t = rotate32(t); t = sbox(t, 1); t = key_schedule[4] = key_schedule[0] ^ t; t = key_schedule[5] = key_schedule[1] ^ t; t = key_schedule[6] = key_schedule[2] ^ t; t = key_schedule[7] = key_schedule[3] ^ t; t = rotate32(t); t = sbox(t, 2); t = key_schedule[8] = key_schedule[4] ^ t; t = key_schedule[9] = key_schedule[5] ^ t; t = key_schedule[10] = key_schedule[6] ^ t; t = key_schedule[11] = key_schedule[7] ^ t; // Use -march=armv8-a+crypto+crc to get this one #if defined(__aarch64__) && defined(__ARM_FEATURE_CRYPTO) asm volatile( "ld1 {v0.16b},[%0] \n" "ld1 {v1.16b,v2.16b,v3.16b},[%1] \n" "aese v0.16b,v1.16b \n" // round1: add_round_key,sub_bytes,shift_rows "aesmc v0.16b,v0.16b \n" // round1: mix_columns "aese v0.16b,v2.16b \n" // round2: add_round_key,sub_bytes,shift_rows "eor v0.16b,v0.16b,v3.16b \n" // finish: add_round_key "st1 {v0.16b},[%0] \n" : /* only output is in *state */ : "r"(state), "r"(key_schedule) : "v0", "v1", "v2", "v3", "cc", "memory"); // Use -maes to get this one #elif defined(__x86_64__) && defined(__AES__) asm volatile( "movups (%0), %%xmm0 \n" "movups (%1), %%xmm1 \n" "pxor %%xmm1,%%xmm0 \n" // add_round_key(state, key_schedule) "movups 16(%1),%%xmm2 \n" "movups 32(%1),%%xmm1 \n" "aesenc %%xmm2,%%xmm0 \n" // first round "aesenclast %%xmm1,%%xmm0 \n" // final round "movups %%xmm0, (%0) \n" : /* only output is in *state */ : "r"(state), "r" (key_schedule) : "xmm0", "xmm1", "xmm2", "cc", "memory"); #else /* first round of the algorithm */ add_round_key(state, (void*)&key_schedule[0]); sub_bytes(state); shift_rows(state); mix_columns(state); add_round_key(state, (void*)&key_schedule[4]); /* final round of the algorithm */ sub_bytes(state); shift_rows(state); add_round_key(state, (void*)&key_schedule[8]); #endif } // this seems necessary only for gcc, otherwise hash is bogus typedef __attribute__((may_alias)) uint8_t rf_u8; typedef __attribute__((may_alias)) uint16_t rf_u16; typedef __attribute__((may_alias)) uint32_t rf_u32; typedef __attribute__((may_alias)) uint64_t rf_u64; // 2048 entries for the rambox => 16kB #define RAMBOX_SIZE 2048 #define RAMBOX_LOOPS 4 typedef union { rf_u8 b[32]; rf_u16 w[16]; rf_u32 d[8]; rf_u64 q[4]; } hash256_t; typedef struct __attribute__((aligned(16))) rf_ctx { uint64_t rambox[RAMBOX_SIZE]; hash256_t hash; uint32_t crc; uint32_t word; // LE pending message uint32_t len; // total message length } rf256_ctx_t; // these archs are fine with unaligned reads #if defined(__x86_64__)||defined(__aarch64__) #define RF_UNALIGNED_LE64 #define RF_UNALIGNED_LE32 #elif defined(__i386__)||defined(__ARM_ARCH_7A__) #define RF_UNALIGNED_LE32 #endif #define RF256_INIT_CRC 20180213 // the table is used as an 8 bit-aligned array of uint64_t for the first word, // and as a 16 bit-aligned array of uint64_t for the second word. It is filled // with the sha256 of "RainForestProCpuAntiAsic", iterated over and over until // the table is filled. The highest offset being ((uint16_t *)table)[255] we // need to add 6 extra bytes at the end to read an uint64_t. Maybe calculated // on a UNIX system with this loop : // // ref="RainForestProCpuAntiAsic" // for ((i=0;i<18;i++)); do // set $(echo -n $ref|sha256sum) // echo $1|sed 's/\(..\)/0x\1,/g' // ref=$(printf $(echo $1|sed 's/\(..\)/\\x\1/g')) // done const uint8_t rf_table[256*2+6] = { 0x8e,0xc1,0xa8,0x04,0x38,0x78,0x7c,0x54,0x29,0x23,0x1b,0x78,0x9f,0xf9,0x27,0x54, 0x11,0x78,0x95,0xb6,0xaf,0x78,0x45,0x16,0x2b,0x9e,0x91,0xe8,0x97,0x25,0xf8,0x63, 0x82,0x56,0xcf,0x48,0x6f,0x82,0x14,0x0d,0x61,0xbe,0x47,0xd1,0x37,0xee,0x30,0xa9, 0x28,0x1e,0x4b,0xbf,0x07,0xcd,0x41,0xdf,0x23,0x21,0x12,0xb8,0x81,0x99,0x1d,0xe6, 0x68,0xcf,0xfa,0x2d,0x8e,0xb9,0x88,0xa7,0x15,0xce,0x9e,0x2f,0xeb,0x1b,0x0f,0x67, 0x20,0x68,0x6c,0xa9,0x5d,0xc1,0x7c,0x76,0xdf,0xbd,0x98,0x61,0xb4,0x14,0x65,0x40, 0x1e,0x72,0x51,0x74,0x93,0xd3,0xad,0xbe,0x46,0x0a,0x25,0xfb,0x6a,0x5e,0x1e,0x8a, 0x5a,0x03,0x3c,0xab,0x12,0xc2,0xd4,0x07,0x91,0xab,0xc9,0xdf,0x92,0x2c,0x85,0x6a, 0xa6,0x25,0x1e,0x66,0x50,0x26,0x4e,0xa8,0xbd,0xda,0x88,0x1b,0x95,0xd4,0x00,0xeb, 0x0d,0x1c,0x9b,0x3c,0x86,0xc7,0xb2,0xdf,0xb4,0x5a,0x36,0x15,0x8e,0x04,0xd2,0x54, 0x79,0xd2,0x3e,0x3d,0x99,0x50,0xa6,0x12,0x4c,0x32,0xc8,0x51,0x14,0x4d,0x4b,0x0e, 0xbb,0x17,0x80,0x8f,0xa4,0xc4,0x99,0x72,0xd7,0x14,0x4b,0xef,0xed,0x14,0xe9,0x17, 0xfa,0x9b,0x5d,0x37,0xd6,0x2f,0xef,0x02,0xd6,0x71,0x0a,0xbd,0xc5,0x40,0x11,0x90, 0x90,0x4e,0xb4,0x4c,0x72,0x51,0x7a,0xd8,0xba,0x30,0x4d,0x8c,0xe2,0x11,0xbb,0x6d, 0x4b,0xbc,0x6f,0x14,0x0c,0x9f,0xfa,0x5e,0x66,0x40,0x45,0xcb,0x7d,0x1b,0x3a,0xc5, 0x5e,0x9c,0x1e,0xcc,0xbd,0x16,0x3b,0xcf,0xfb,0x2a,0xd2,0x08,0x2a,0xf8,0x3d,0x46, 0x93,0x90,0xb3,0x66,0x81,0x34,0x7f,0x6d,0x9b,0x8c,0x99,0x03,0xc5,0x27,0xa3,0xd9, 0xce,0x90,0x88,0x0f,0x55,0xc3,0xa1,0x60,0x53,0xc8,0x0d,0x25,0xae,0x61,0xd9,0x72, 0x48,0x1d,0x6c,0x61,0xd2,0x87,0xdd,0x3d,0x23,0xf5,0xde,0x93,0x39,0x4c,0x43,0x9a, 0xf9,0x37,0xf2,0x61,0xd7,0xf8,0xea,0x65,0xf0,0xf1,0xde,0x3f,0x05,0x57,0x83,0x81, 0xde,0x02,0x62,0x49,0xd4,0x32,0x7e,0x4a,0xd4,0x9f,0x40,0x7e,0xb9,0x91,0xb1,0x35, 0xf7,0x62,0x3f,0x65,0x9e,0x4d,0x2b,0x10,0xde,0xd4,0x77,0x64,0x0f,0x84,0xad,0x92, 0xe7,0xa3,0x8a,0x10,0xc1,0x14,0xeb,0x57,0xc4,0xad,0x8e,0xc2,0xc7,0x32,0xa3,0x7e, 0x50,0x1f,0x7c,0xbb,0x2e,0x5f,0xf5,0x18,0x22,0xea,0xec,0x9d,0xa4,0x77,0xcd,0x85, 0x04,0x2f,0x20,0x61,0x72,0xa7,0x0c,0x92,0x06,0x4d,0x01,0x70,0x9b,0x35,0xa1,0x27, 0x32,0x6e,0xb9,0x78,0xe0,0xaa,0x5f,0x91,0xa6,0x51,0xe3,0x63,0xf8,0x97,0x2f,0x60, 0xd9,0xfb,0x15,0xe5,0x59,0xcf,0x31,0x3c,0x61,0xc7,0xb5,0x61,0x2a,0x6b,0xdd,0xd1, 0x09,0x70,0xc0,0xcf,0x94,0x7a,0xcc,0x31,0x94,0xb1,0xa2,0xf6,0x95,0xc0,0x38,0x3d, 0xef,0x19,0x30,0x70,0xdd,0x62,0x32,0x8f,0x7c,0x30,0xb9,0x18,0xf8,0xe7,0x8f,0x0a, 0xaa,0xb6,0x00,0x86,0xf2,0xe0,0x30,0x5f,0xa2,0xe8,0x00,0x8e,0x05,0xa0,0x22,0x18, 0x9f,0x83,0xd4,0x3a,0x85,0x10,0xb9,0x51,0x8d,0x07,0xf0,0xb3,0xcd,0x9b,0x55,0xa1, 0x14,0xce,0x0f,0xb2,0xcf,0xb8,0xce,0x2d,0xe6,0xe8,0x35,0x32,0x1f,0x22,0xb5,0xec, 0xd0,0xb9,0x72,0xa8,0xb4,0x97 //,0x6e,0x0a,0x47,0xcd,0x5a,0xf0,0xdc,0xeb,0xfd,0x46, //0xe5,0x6e,0x83,0xe6,0x1a,0xcc,0x4a,0x8b,0xa5,0x28,0x9e,0x50,0x48,0xa9,0xa2,0x6b, }; // this is made of the last iteration of the rf_table (18th transformation) const uint8_t rf256_iv[32] = { 0x78,0xe9,0x90,0xd3,0xb3,0xc8,0x9b,0x7b,0x0a,0xc4,0x86,0x6e,0x4e,0x38,0xb3,0x6b, 0x33,0x68,0x7c,0xed,0x73,0x35,0x4b,0x0a,0x97,0x25,0x4c,0x77,0x7a,0xaa,0x61,0x1b }; // crc32 lookup tables const uint32_t rf_crc32_table[256] = { /* 0x00 */ 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, /* 0x04 */ 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, /* 0x08 */ 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, /* 0x0c */ 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, /* 0x10 */ 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, /* 0x14 */ 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, /* 0x18 */ 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, /* 0x1c */ 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, /* 0x20 */ 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, /* 0x24 */ 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, /* 0x28 */ 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, /* 0x2c */ 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, /* 0x30 */ 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, /* 0x34 */ 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, /* 0x38 */ 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, /* 0x3c */ 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, /* 0x40 */ 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, /* 0x44 */ 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, /* 0x48 */ 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, /* 0x4c */ 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, /* 0x50 */ 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, /* 0x54 */ 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, /* 0x58 */ 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, /* 0x5c */ 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, /* 0x60 */ 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, /* 0x64 */ 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, /* 0x68 */ 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, /* 0x6c */ 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, /* 0x70 */ 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, /* 0x74 */ 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, /* 0x78 */ 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, /* 0x7c */ 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, /* 0x80 */ 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, /* 0x84 */ 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, /* 0x88 */ 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, /* 0x8c */ 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, /* 0x90 */ 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, /* 0x94 */ 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, /* 0x98 */ 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, /* 0x9c */ 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, /* 0xa0 */ 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, /* 0xa4 */ 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, /* 0xa8 */ 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, /* 0xac */ 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, /* 0xb0 */ 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, /* 0xb4 */ 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, /* 0xb8 */ 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, /* 0xbc */ 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, /* 0xc0 */ 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, /* 0xc4 */ 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, /* 0xc8 */ 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, /* 0xcc */ 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, /* 0xd0 */ 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, /* 0xd4 */ 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, /* 0xd8 */ 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, /* 0xdc */ 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, /* 0xe0 */ 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, /* 0xe4 */ 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, /* 0xe8 */ 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, /* 0xec */ 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, /* 0xf0 */ 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, /* 0xf4 */ 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, /* 0xf8 */ 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, /* 0xfc */ 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d, }; // compute the crc32 of 32-bit message _msg_ from previous crc _crc_. // build with -mcpu=cortex-a53+crc to enable native CRC instruction on ARM static inline uint32_t rf_crc32_32(uint32_t crc, uint32_t msg) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) asm("crc32w %w0,%w0,%w1\n":"+r"(crc):"r"(msg)); #else crc=crc^msg; crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); #endif return crc; } //static inline uint32_t rf_crc32_24(uint32_t crc, uint32_t msg) { //#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) // asm("crc32b %w0,%w0,%w1\n":"+r"(crc):"r"(msg)); // asm("crc32h %w0,%w0,%w1\n":"+r"(crc):"r"(msg>>8)); //#else // crc=crc^msg; // crc=rf_crc32_table[crc&0xff]^(crc>>8); // crc=rf_crc32_table[crc&0xff]^(crc>>8); // crc=rf_crc32_table[crc&0xff]^(crc>>8); //#endif // return crc; //} // //static inline uint32_t rf_crc32_16(uint32_t crc, uint32_t msg) { //#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) // asm("crc32h %w0,%w0,%w1\n":"+r"(crc):"r"(msg)); //#else // crc=crc^msg; // crc=rf_crc32_table[crc&0xff]^(crc>>8); // crc=rf_crc32_table[crc&0xff]^(crc>>8); //#endif // return crc; //} // //static inline uint32_t rf_crc32_8(uint32_t crc, uint32_t msg) { //#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) // asm("crc32b %w0,%w0,%w1\n":"+r"(crc):"r"(msg)); //#else // crc=crc^msg; // crc=rf_crc32_table[crc&0xff]^(crc>>8); //#endif // return crc; //} // add to _msg_ its own crc32. use -mcpu=cortex-a53+crc to enable native CRC // instruction on ARM. static inline uint64_t rf_add64_crc32(uint64_t msg) { uint64_t crc=0; #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) asm("crc32x %w0,%w0,%x1\n":"+r"(crc):"r"(msg)); #else crc^=(uint32_t)msg; crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc^=msg>>32; crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); crc=rf_crc32_table[crc&0xff]^(crc>>8); #endif return msg+crc; } // mix the current state with the crc and return the new crc static inline uint32_t rf_crc32x4(rf_u32 *state, uint32_t crc) { crc=state[0]=rf_crc32_32(crc, state[0]); crc=state[1]=rf_crc32_32(crc, state[1]); crc=state[2]=rf_crc32_32(crc, state[2]); crc=state[3]=rf_crc32_32(crc, state[3]); return crc; } // read 64 bit from possibly unaligned memory address _p_ in little endian mode static inline uint64_t rf_memr64(const uint8_t *p) { #ifdef RF_UNALIGNED_LE64 return *(uint64_t *)p; #else uint64_t ret; int byte; for (ret=byte=0; byte<8; byte++) ret+=(uint64_t)p[byte]<<(byte*8); return ret; #endif } // return rainforest lower word entry for index static inline uint64_t rf_wltable(uint8_t index) { return rf_memr64(&rf_table[index]); } // return rainforest upper word entry for _index_ static inline uint64_t rf_whtable(uint8_t index) { return rf_memr64(&rf_table[index*2]); } // rotate left vector _v_ by _bits_ bits static inline uint64_t rf_rotl64(uint64_t v, uint8_t bits) { #if !defined(__ARM_ARCH_8A) && !defined(__AARCH64EL__) && !defined(x86_64) bits&=63; #endif return (v<>(64-bits)); } // rotate right vector _v_ by _bits_ bits static inline uint64_t rf_rotr64(uint64_t v, uint8_t bits) { #if !defined(__ARM_ARCH_8A) && !defined(__AARCH64EL__) && !defined(x86_64) bits&=63; #endif return (v>>bits)|(v<<(64-bits)); } // reverse all bytes in the word _v_ static inline uint64_t rf_bswap64(uint64_t v) { #if defined(__x86_64__) asm("bswap %0":"+r"(v)); #elif defined(__aarch64__) asm("rev %0,%0\n":"+r"(v)); #else v=((v&0xff00ff00ff00ff00ULL)>>8)|((v&0x00ff00ff00ff00ffULL)<<8); v=((v&0xffff0000ffff0000ULL)>>16)|((v&0x0000ffff0000ffffULL)<<16); v=(v>>32)|(v<<32); #endif return v; } // lookup _old_ in _rambox_, update it and perform a substitution if a matching // value is found. static inline uint32_t rf_rambox(uint64_t *rambox, uint64_t old) { uint64_t *p; int loops; for (loops=0; loops>56)<0x80) *p = old; } return old; } // write (_x_,_y_) at cell _cell_ for offset _ofs_ static inline void rf_w128(uint64_t *cell, ulong ofs, uint64_t x, uint64_t y) { #if defined(__ARM_ARCH_8A) || defined(__AARCH64EL__) // 128 bit at once is faster when exactly two parallelizable instructions are // used between two calls to keep the pipe full. asm volatile("stp %0, %1, [%2,#%3]\n\t" : /* no output */ : "r"(x), "r"(y), "r" (cell), "I" (ofs*8)); #else cell[ofs+0] = x; cell[ofs+1] = y; #endif } // initialize the ram box static __attribute__((noinline)) void rf_raminit(uint64_t *rambox) { uint64_t pat1 = 0x0123456789ABCDEFULL; uint64_t pat2 = 0xFEDCBA9876543210ULL; uint64_t pat3; uint32_t pos; // Note: no need to mask the higher bits on armv8 nor x86 : // // From ARMv8's ref manual : // The register that is specified for a shift can be 32-bit or // 64-bit. The amount to be shifted can be specified either as // an immediate, that is up to register size minus one, or by // a register where the value is taken only from the bottom five // (modulo-32) or six (modulo-64) bits. // // Here we rotate pat2 by pat1's bits and put it into pat1, and in // parallel we rotate pat1 by pat2's bits and put it into pat2. Thus // the two data blocks are exchanged in addition to being rotated. // What is stored each time is the previous and the rotated blocks, // which only requires one rotate and a register rename. for (pos = 0; pos < RAMBOX_SIZE; pos += 16) { pat3 = pat1; pat1 = rf_rotr64(pat2, pat3) + 0x111; rf_w128(rambox + pos, 0, pat1, pat3); pat3 = pat2; pat2 = rf_rotr64(pat1, pat3) + 0x222; rf_w128(rambox + pos, 2, pat2, pat3); pat3 = pat1; pat1 = rf_rotr64(pat2, pat3) + 0x333; rf_w128(rambox + pos, 4, pat1, pat3); pat3 = pat2; pat2 = rf_rotr64(pat1, pat3) + 0x444; rf_w128(rambox + pos, 6, pat2, pat3); pat3 = pat1; pat1 = rf_rotr64(pat2, pat3) + 0x555; rf_w128(rambox + pos, 8, pat1, pat3); pat3 = pat2; pat2 = rf_rotr64(pat1, pat3) + 0x666; rf_w128(rambox + pos, 10, pat2, pat3); pat3 = pat1; pat1 = rf_rotr64(pat2, pat3) + 0x777; rf_w128(rambox + pos, 12, pat1, pat3); pat3 = pat2; pat2 = rf_rotr64(pat1, pat3) + 0x888; rf_w128(rambox + pos, 14, pat2, pat3); } } // exec the div/mod box. _v0_ and _v1_ must be aligned. static inline void rf256_divbox(rf_u64 *v0, rf_u64 *v1) { uint64_t pl, ql, ph, qh; //---- low word ---- ---- high word ---- pl=~*v0; ph=~*v1; ql=rf_bswap64(*v0); qh=rf_bswap64(*v1); if (!pl||!ql) { pl=ql=0; } else if (pl>ql) { uint64_t p=pl; pl=p/ql; ql=p%ql; } else { uint64_t p=pl; pl=ql/p; ql=ql%p; } if (!ph||!qh) { ph=qh=0; } else if (ph>qh) { uint64_t p=ph; ph=p/qh; qh=p%qh; } else { uint64_t p=ph; ph=qh/p; qh=qh%p; } pl+=qh; ph+=ql; *v0-=pl; *v1-=ph; } // exec the rotation/add box. _v0_ and _v1_ must be aligned. static inline void rf256_rotbox(rf_u64 *v0, rf_u64 *v1, uint8_t b0, uint8_t b1) { uint64_t l, h; //---- low word ---- ---- high word ---- l=*v0; h=*v1; l=rf_rotr64(l,b0); h=rf_rotl64(h,b1); l+=rf_wltable(b0); h+=rf_whtable(b1); b0=l; b1=h; l=rf_rotl64(l,b1); h=rf_rotr64(h,b0); b0=l; b1=h; l=rf_rotr64(l,b1); h=rf_rotl64(h,b0); *v0=l; *v1=h; } // mix the current state with the current crc static inline uint32_t rf256_scramble(rf256_ctx_t *ctx) { return ctx->crc=rf_crc32x4(ctx->hash.d, ctx->crc); } // mix the state with the crc and the pending text, and update the crc static inline void rf256_inject(rf256_ctx_t *ctx) { // BS: never <4 bytes with 80 input bytes //ctx->crc= // (ctx->bytes&3)==0?rf_crc32_32(rf256_scramble(ctx), ctx->word): // (ctx->bytes&3)==3?rf_crc32_24(rf256_scramble(ctx), ctx->word): // (ctx->bytes&3)==2?rf_crc32_16(rf256_scramble(ctx), ctx->word): // rf_crc32_8(rf256_scramble(ctx), ctx->word); ctx->crc=rf_crc32_32(rf256_scramble(ctx), ctx->word); ctx->word=0; } // rotate the hash by 32 bits. Not using streaming instructions (SSE/NEON) is // faster because the compiler can follow moves an use register renames. static inline void rf256_rot32x256(hash256_t *hash) { #if defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_ARCH_7A__) uint32_t t0, t1, t2; t0=hash->d[0]; t1=hash->d[1]; t2=hash->d[2]; hash->d[1]=t0; hash->d[2]=t1; t0=hash->d[3]; t1=hash->d[4]; hash->d[3]=t2; hash->d[4]=t0; t2=hash->d[5]; t0=hash->d[6]; hash->d[5]=t1; hash->d[6]=t2; t1=hash->d[7]; hash->d[7]=t0; hash->d[0]=t1; #else uint32_t tmp=hash->d[7]; memmove(&hash->d[1], &hash->d[0], 28); hash->d[0]=tmp; #endif } // encrypt the first 128 bits of the hash using the last 128 bits as the key static inline void rf256_aesenc(rf256_ctx_t *ctx) { aes2r_encrypt((uint8_t *)ctx->hash.b, (uint8_t *)ctx->hash.b+16); } // each new round consumes exactly 32 bits of text at once and perturbates // 128 bits of output, 96 of which overlap with the previous round, and 32 // of which are new. With 5 rounds or more each output bit depends on every // input bit. static inline void rf256_one_round(rf256_ctx_t *ctx) { uint64_t carry; rf256_rot32x256(&ctx->hash); carry=((uint64_t)ctx->len << 32) + ctx->crc; rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); carry=rf_rambox(ctx->rambox, carry); rf256_rotbox(ctx->hash.q, ctx->hash.q+1, carry, carry>>56); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); carry=rf_rambox(ctx->rambox, carry); rf256_rotbox(ctx->hash.q, ctx->hash.q+1, carry>>8, carry>>48); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); carry=rf_rambox(ctx->rambox, carry); rf256_rotbox(ctx->hash.q, ctx->hash.q+1, carry>>16, carry>>40); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_scramble(ctx); carry=rf_rambox(ctx->rambox,carry); rf256_rotbox(ctx->hash.q, ctx->hash.q+1, carry>>24, carry>>32); rf256_scramble(ctx); rf256_divbox(ctx->hash.q, ctx->hash.q+1); rf256_inject(ctx); rf256_aesenc(ctx); rf256_scramble(ctx); } // initialize the hash state static void rf256_init(rf256_ctx_t *ctx) { rf_raminit(ctx->rambox); memcpy(ctx->hash.b, rf256_iv, sizeof(ctx->hash.b)); ctx->crc=RF256_INIT_CRC; ctx->word=ctx->len=0; } // update the hash context _ctx_ with _len_ bytes from message _msg_ static void rf256_update(rf256_ctx_t *ctx, const void *msg, size_t len) { while (len > 0) { #ifdef RF_UNALIGNED_LE32 if (!(ctx->len&3) && len>=4) { ctx->word=*(uint32_t *)msg; ctx->len+=4; rf256_one_round(ctx); msg+=4; len-=4; continue; } #endif ctx->word|=((uint32_t)*(uint8_t *)msg++)<<(8*(ctx->len++&3)); len--; if (!(ctx->len&3)) rf256_one_round(ctx); } } // finalize the hash and copy the result into _out_ if not null (256 bits) static void rf256_final(void *out, rf256_ctx_t *ctx) { // BS: never happens with 80 input bytes //uint32_t pad; //if (ctx->len&3) // rf256_one_round(ctx); // always work on at least 256 bits of input //for (pad=0; pad+ctx->len < 32;pad+=4) // rf256_one_round(ctx); // always run 4 extra rounds to complete the last 128 bits rf256_one_round(ctx); rf256_one_round(ctx); rf256_one_round(ctx); rf256_one_round(ctx); //if (out) memcpy(out, ctx->hash.b, 32); } // hash _len_ bytes from _in_ into _out_ void rf256_hash(void *out, const void *in, size_t len) { rf256_ctx_t ctx; rf256_init(&ctx); rf256_update(&ctx, in, len); rf256_final(out, &ctx); }