// Copyright (c) 2014 The Magi developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include "magimath.h" #define EPS1 (std::numeric_limits::epsilon()) #define EPS2 3.0e-11 static void gauleg(double x1, double x2, double x[], double w[], const int n) { int m, i, j; double z1, z, xm, xl, pp, p3, p2, p1; m = (n+1)/2; xm = 0.5*(x2+x1); xl = 0.5*(x2-x1); for (i=1; i <= m; i++) { z = cos(3.141592654 * (i-0.25)/(n+0.5)); do { p1 = 1.0; p2 = 0.0; for (j=1; j <= n; j++) { p3 = p2; p2 = p1; p1 = ((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j; } pp = n * (z*p1 - p2) / (z*z - 1.0); z1 = z; z = z1 - p1/pp; } while (fabs(z-z1) > EPS2); x[i]=xm-xl*z; x[n+1-i]=xm+xl*z; w[i]=2.0*xl/((1.0-z*z)*pp*pp); w[n+1-i]=w[i]; } } static double GaussianQuad_N(double func(const double), const double a2, const double b2, const int NptGQ) { int j; double s = 0.0; double x[NptGQ+1], w[NptGQ+1]; gauleg(a2, b2, x, w, NptGQ); for (j=1; j <= NptGQ; j++) { s += w[j] * func(x[j]); } return s; } static double swit_(double wvnmb) { return pow( (5.55243*(exp_n(-0.3*wvnmb/15.762) - exp_n(-0.6*wvnmb/15.762)))*wvnmb, 0.5) / 1034.66 * pow(sin(wvnmb/65.), 2.); } uint32_t sw_(int nnounce, const int divs) { double wmax = ((sqrt((double)(nnounce))*(1.+EPS1))/450 + 100); return ((uint32_t)(GaussianQuad_N(swit_, 0., wmax, divs)*(1.+EPS1)*1.e6)); }