mirror of
https://github.com/LBRYFoundation/pool.git
synced 2025-08-23 17:37:25 +00:00
add support for yescrypt algo
Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
This commit is contained in:
parent
00b3316f5d
commit
f4fcf685ae
13 changed files with 2511 additions and 0 deletions
1
rc.local
1
rc.local
|
@ -43,6 +43,7 @@ screen -dmS blake $STRATUM_DIR/run.sh blake
|
|||
|
||||
screen -dmS skein $STRATUM_DIR/run.sh skein
|
||||
screen -dmS skein2 $STRATUM_DIR/run.sh skein2
|
||||
screen -dmS yescrypt $STRATUM_DIR/run.sh yescrypt
|
||||
screen -dmS zr5 $STRATUM_DIR/run.sh zr5
|
||||
screen -dmS sib $STRATUM_DIR/run.sh sib
|
||||
screen -dmS m7m $STRATUM_DIR/run.sh m7m
|
||||
|
|
|
@ -10,6 +10,7 @@ LDFLAGS=-O2 -lgmp
|
|||
SOURCES=lyra2re.c lyra2v2.c Lyra2.c Sponge.c blake.c scrypt.c c11.c x11.c x13.c sha256.c keccak.c \
|
||||
x14.c x15.c nist5.c fresh.c quark.c neoscrypt.c scryptn.c qubit.c skein.c groestl.c \
|
||||
skein2.c zr5.c bmw.c luffa.c pentablake.c whirlpool.c whirlpoolx.c blakecoin.c \
|
||||
yescrypt.c yescrypt-opt.c sha256_Y.c \
|
||||
m7m.c magimath.cpp \
|
||||
hive.c pomelo.c \
|
||||
sib.c gost.c
|
||||
|
|
411
stratum/algos/sha256_Y.c
Executable file
411
stratum/algos/sha256_Y.c
Executable file
|
@ -0,0 +1,411 @@
|
|||
/*-
|
||||
* Copyright 2005,2007,2009 Colin Percival
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sysendian.h"
|
||||
|
||||
#include "sha256_Y.h"
|
||||
|
||||
/*
|
||||
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
||||
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
||||
*/
|
||||
static void
|
||||
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len / 4; i++)
|
||||
be32enc(dst + i * 4, src[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode a big-endian length len vector of (unsigned char) into a length
|
||||
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
|
||||
*/
|
||||
static void
|
||||
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len / 4; i++)
|
||||
dst[i] = be32dec(src + i * 4);
|
||||
}
|
||||
|
||||
/* Elementary functions used by SHA256 */
|
||||
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
||||
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
||||
#define SHR(x, n) (x >> n)
|
||||
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
||||
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
||||
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
||||
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
||||
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
||||
|
||||
/* SHA256 round function */
|
||||
#define RND(a, b, c, d, e, f, g, h, k) \
|
||||
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
||||
t1 = S0(a) + Maj(a, b, c); \
|
||||
d += t0; \
|
||||
h = t0 + t1;
|
||||
|
||||
/* Adjusted round function for rotating state */
|
||||
#define RNDr(S, W, i, k) \
|
||||
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
||||
S[(66 - i) % 8], S[(67 - i) % 8], \
|
||||
S[(68 - i) % 8], S[(69 - i) % 8], \
|
||||
S[(70 - i) % 8], S[(71 - i) % 8], \
|
||||
W[i] + k)
|
||||
|
||||
/*
|
||||
* SHA256 block compression function. The 256-bit state is transformed via
|
||||
* the 512-bit input block to produce a new state.
|
||||
*/
|
||||
static void
|
||||
SHA256_Transform(uint32_t * state, const unsigned char block[64])
|
||||
{
|
||||
uint32_t W[64];
|
||||
uint32_t S[8];
|
||||
uint32_t t0, t1;
|
||||
int i;
|
||||
|
||||
/* 1. Prepare message schedule W. */
|
||||
be32dec_vect(W, block, 64);
|
||||
for (i = 16; i < 64; i++)
|
||||
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
||||
|
||||
/* 2. Initialize working variables. */
|
||||
memcpy(S, state, 32);
|
||||
|
||||
/* 3. Mix. */
|
||||
RNDr(S, W, 0, 0x428a2f98);
|
||||
RNDr(S, W, 1, 0x71374491);
|
||||
RNDr(S, W, 2, 0xb5c0fbcf);
|
||||
RNDr(S, W, 3, 0xe9b5dba5);
|
||||
RNDr(S, W, 4, 0x3956c25b);
|
||||
RNDr(S, W, 5, 0x59f111f1);
|
||||
RNDr(S, W, 6, 0x923f82a4);
|
||||
RNDr(S, W, 7, 0xab1c5ed5);
|
||||
RNDr(S, W, 8, 0xd807aa98);
|
||||
RNDr(S, W, 9, 0x12835b01);
|
||||
RNDr(S, W, 10, 0x243185be);
|
||||
RNDr(S, W, 11, 0x550c7dc3);
|
||||
RNDr(S, W, 12, 0x72be5d74);
|
||||
RNDr(S, W, 13, 0x80deb1fe);
|
||||
RNDr(S, W, 14, 0x9bdc06a7);
|
||||
RNDr(S, W, 15, 0xc19bf174);
|
||||
RNDr(S, W, 16, 0xe49b69c1);
|
||||
RNDr(S, W, 17, 0xefbe4786);
|
||||
RNDr(S, W, 18, 0x0fc19dc6);
|
||||
RNDr(S, W, 19, 0x240ca1cc);
|
||||
RNDr(S, W, 20, 0x2de92c6f);
|
||||
RNDr(S, W, 21, 0x4a7484aa);
|
||||
RNDr(S, W, 22, 0x5cb0a9dc);
|
||||
RNDr(S, W, 23, 0x76f988da);
|
||||
RNDr(S, W, 24, 0x983e5152);
|
||||
RNDr(S, W, 25, 0xa831c66d);
|
||||
RNDr(S, W, 26, 0xb00327c8);
|
||||
RNDr(S, W, 27, 0xbf597fc7);
|
||||
RNDr(S, W, 28, 0xc6e00bf3);
|
||||
RNDr(S, W, 29, 0xd5a79147);
|
||||
RNDr(S, W, 30, 0x06ca6351);
|
||||
RNDr(S, W, 31, 0x14292967);
|
||||
RNDr(S, W, 32, 0x27b70a85);
|
||||
RNDr(S, W, 33, 0x2e1b2138);
|
||||
RNDr(S, W, 34, 0x4d2c6dfc);
|
||||
RNDr(S, W, 35, 0x53380d13);
|
||||
RNDr(S, W, 36, 0x650a7354);
|
||||
RNDr(S, W, 37, 0x766a0abb);
|
||||
RNDr(S, W, 38, 0x81c2c92e);
|
||||
RNDr(S, W, 39, 0x92722c85);
|
||||
RNDr(S, W, 40, 0xa2bfe8a1);
|
||||
RNDr(S, W, 41, 0xa81a664b);
|
||||
RNDr(S, W, 42, 0xc24b8b70);
|
||||
RNDr(S, W, 43, 0xc76c51a3);
|
||||
RNDr(S, W, 44, 0xd192e819);
|
||||
RNDr(S, W, 45, 0xd6990624);
|
||||
RNDr(S, W, 46, 0xf40e3585);
|
||||
RNDr(S, W, 47, 0x106aa070);
|
||||
RNDr(S, W, 48, 0x19a4c116);
|
||||
RNDr(S, W, 49, 0x1e376c08);
|
||||
RNDr(S, W, 50, 0x2748774c);
|
||||
RNDr(S, W, 51, 0x34b0bcb5);
|
||||
RNDr(S, W, 52, 0x391c0cb3);
|
||||
RNDr(S, W, 53, 0x4ed8aa4a);
|
||||
RNDr(S, W, 54, 0x5b9cca4f);
|
||||
RNDr(S, W, 55, 0x682e6ff3);
|
||||
RNDr(S, W, 56, 0x748f82ee);
|
||||
RNDr(S, W, 57, 0x78a5636f);
|
||||
RNDr(S, W, 58, 0x84c87814);
|
||||
RNDr(S, W, 59, 0x8cc70208);
|
||||
RNDr(S, W, 60, 0x90befffa);
|
||||
RNDr(S, W, 61, 0xa4506ceb);
|
||||
RNDr(S, W, 62, 0xbef9a3f7);
|
||||
RNDr(S, W, 63, 0xc67178f2);
|
||||
|
||||
/* 4. Mix local working variables into global state */
|
||||
for (i = 0; i < 8; i++)
|
||||
state[i] += S[i];
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(W, 0, 256);
|
||||
memset(S, 0, 32);
|
||||
t0 = t1 = 0;
|
||||
}
|
||||
|
||||
static unsigned char PAD[64] = {
|
||||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
/* Add padding and terminating bit-count. */
|
||||
static void
|
||||
SHA256_Pad(SHA256_CTX_Y * ctx)
|
||||
{
|
||||
unsigned char len[8];
|
||||
uint32_t r, plen;
|
||||
|
||||
/*
|
||||
* Convert length to a vector of bytes -- we do this now rather
|
||||
* than later because the length will change after we pad.
|
||||
*/
|
||||
be32enc_vect(len, ctx->count, 8);
|
||||
|
||||
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
|
||||
r = (ctx->count[1] >> 3) & 0x3f;
|
||||
plen = (r < 56) ? (56 - r) : (120 - r);
|
||||
SHA256_Update_Y(ctx, PAD, (size_t)plen);
|
||||
|
||||
/* Add the terminating bit-count */
|
||||
SHA256_Update_Y(ctx, len, 8);
|
||||
}
|
||||
|
||||
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
||||
void
|
||||
SHA256_Init_Y(SHA256_CTX_Y * ctx)
|
||||
{
|
||||
|
||||
/* Zero bits processed so far */
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
|
||||
/* Magic initialization constants */
|
||||
ctx->state[0] = 0x6A09E667;
|
||||
ctx->state[1] = 0xBB67AE85;
|
||||
ctx->state[2] = 0x3C6EF372;
|
||||
ctx->state[3] = 0xA54FF53A;
|
||||
ctx->state[4] = 0x510E527F;
|
||||
ctx->state[5] = 0x9B05688C;
|
||||
ctx->state[6] = 0x1F83D9AB;
|
||||
ctx->state[7] = 0x5BE0CD19;
|
||||
}
|
||||
|
||||
/* Add bytes into the hash */
|
||||
void
|
||||
SHA256_Update_Y(SHA256_CTX_Y * ctx, const void *in, size_t len)
|
||||
{
|
||||
uint32_t bitlen[2];
|
||||
uint32_t r;
|
||||
const unsigned char *src = in;
|
||||
|
||||
/* Number of bytes left in the buffer from previous updates */
|
||||
r = (ctx->count[1] >> 3) & 0x3f;
|
||||
|
||||
/* Convert the length into a number of bits */
|
||||
bitlen[1] = ((uint32_t)len) << 3;
|
||||
bitlen[0] = (uint32_t)(len >> 29);
|
||||
|
||||
/* Update number of bits */
|
||||
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
|
||||
ctx->count[0]++;
|
||||
ctx->count[0] += bitlen[0];
|
||||
|
||||
/* Handle the case where we don't need to perform any transforms */
|
||||
if (len < 64 - r) {
|
||||
memcpy(&ctx->buf[r], src, len);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Finish the current block */
|
||||
memcpy(&ctx->buf[r], src, 64 - r);
|
||||
SHA256_Transform(ctx->state, ctx->buf);
|
||||
src += 64 - r;
|
||||
len -= 64 - r;
|
||||
|
||||
/* Perform complete blocks */
|
||||
while (len >= 64) {
|
||||
SHA256_Transform(ctx->state, src);
|
||||
src += 64;
|
||||
len -= 64;
|
||||
}
|
||||
|
||||
/* Copy left over data into buffer */
|
||||
memcpy(ctx->buf, src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA-256 finalization. Pads the input data, exports the hash value,
|
||||
* and clears the context state.
|
||||
*/
|
||||
void
|
||||
SHA256_Final_Y(unsigned char digest[32], SHA256_CTX_Y * ctx)
|
||||
{
|
||||
|
||||
/* Add padding */
|
||||
SHA256_Pad(ctx);
|
||||
|
||||
/* Write the hash */
|
||||
be32enc_vect(digest, ctx->state, 32);
|
||||
|
||||
/* Clear the context state */
|
||||
memset((void *)ctx, 0, sizeof(*ctx));
|
||||
}
|
||||
|
||||
/* Initialize an HMAC-SHA256 operation with the given key. */
|
||||
void
|
||||
HMAC_SHA256_Init_Y(HMAC_SHA256_CTX_Y * ctx, const void * _K, size_t Klen)
|
||||
{
|
||||
unsigned char pad[64];
|
||||
unsigned char khash[32];
|
||||
const unsigned char * K = _K;
|
||||
size_t i;
|
||||
|
||||
/* If Klen > 64, the key is really SHA256(K). */
|
||||
if (Klen > 64) {
|
||||
SHA256_Init_Y(&ctx->ictx);
|
||||
SHA256_Update_Y(&ctx->ictx, K, Klen);
|
||||
SHA256_Final_Y(khash, &ctx->ictx);
|
||||
K = khash;
|
||||
Klen = 32;
|
||||
}
|
||||
|
||||
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
|
||||
SHA256_Init_Y(&ctx->ictx);
|
||||
memset(pad, 0x36, 64);
|
||||
for (i = 0; i < Klen; i++)
|
||||
pad[i] ^= K[i];
|
||||
SHA256_Update_Y(&ctx->ictx, pad, 64);
|
||||
|
||||
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
|
||||
SHA256_Init_Y(&ctx->octx);
|
||||
memset(pad, 0x5c, 64);
|
||||
for (i = 0; i < Klen; i++)
|
||||
pad[i] ^= K[i];
|
||||
SHA256_Update_Y(&ctx->octx, pad, 64);
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(khash, 0, 32);
|
||||
}
|
||||
|
||||
/* Add bytes to the HMAC-SHA256 operation. */
|
||||
void
|
||||
HMAC_SHA256_Update_Y(HMAC_SHA256_CTX_Y * ctx, const void *in, size_t len)
|
||||
{
|
||||
|
||||
/* Feed data to the inner SHA256 operation. */
|
||||
SHA256_Update_Y(&ctx->ictx, in, len);
|
||||
}
|
||||
|
||||
/* Finish an HMAC-SHA256 operation. */
|
||||
void
|
||||
HMAC_SHA256_Final_Y(unsigned char digest[32], HMAC_SHA256_CTX_Y * ctx)
|
||||
{
|
||||
unsigned char ihash[32];
|
||||
|
||||
/* Finish the inner SHA256 operation. */
|
||||
SHA256_Final_Y(ihash, &ctx->ictx);
|
||||
|
||||
/* Feed the inner hash to the outer SHA256 operation. */
|
||||
SHA256_Update_Y(&ctx->octx, ihash, 32);
|
||||
|
||||
/* Finish the outer SHA256 operation. */
|
||||
SHA256_Final_Y(digest, &ctx->octx);
|
||||
|
||||
/* Clean the stack. */
|
||||
memset(ihash, 0, 32);
|
||||
}
|
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
||||
*/
|
||||
void
|
||||
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
|
||||
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
|
||||
{
|
||||
HMAC_SHA256_CTX_Y PShctx, hctx;
|
||||
size_t i;
|
||||
uint8_t ivec[4];
|
||||
uint8_t U[32];
|
||||
uint8_t T[32];
|
||||
uint64_t j;
|
||||
int k;
|
||||
size_t clen;
|
||||
|
||||
/* Compute HMAC state after processing P and S. */
|
||||
HMAC_SHA256_Init_Y(&PShctx, passwd, passwdlen);
|
||||
HMAC_SHA256_Update_Y(&PShctx, salt, saltlen);
|
||||
|
||||
/* Iterate through the blocks. */
|
||||
for (i = 0; i * 32 < dkLen; i++) {
|
||||
/* Generate INT(i + 1). */
|
||||
be32enc(ivec, (uint32_t)(i + 1));
|
||||
|
||||
/* Compute U_1 = PRF(P, S || INT(i)). */
|
||||
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX_Y));
|
||||
HMAC_SHA256_Update_Y(&hctx, ivec, 4);
|
||||
HMAC_SHA256_Final_Y(U, &hctx);
|
||||
|
||||
/* T_i = U_1 ... */
|
||||
memcpy(T, U, 32);
|
||||
|
||||
for (j = 2; j <= c; j++) {
|
||||
/* Compute U_j. */
|
||||
HMAC_SHA256_Init_Y(&hctx, passwd, passwdlen);
|
||||
HMAC_SHA256_Update_Y(&hctx, U, 32);
|
||||
HMAC_SHA256_Final_Y(U, &hctx);
|
||||
|
||||
/* ... xor U_j ... */
|
||||
for (k = 0; k < 32; k++)
|
||||
T[k] ^= U[k];
|
||||
}
|
||||
|
||||
/* Copy as many bytes as necessary into buf. */
|
||||
clen = dkLen - i * 32;
|
||||
if (clen > 32)
|
||||
clen = 32;
|
||||
memcpy(&buf[i * 32], T, clen);
|
||||
}
|
||||
|
||||
/* Clean PShctx, since we never called _Final on it. */
|
||||
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
|
||||
}
|
62
stratum/algos/sha256_Y.h
Executable file
62
stratum/algos/sha256_Y.h
Executable file
|
@ -0,0 +1,62 @@
|
|||
/*-
|
||||
* Copyright 2005,2007,2009 Colin Percival
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
|
||||
*/
|
||||
|
||||
#ifndef _SHA256_H_
|
||||
#define _SHA256_H_
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
typedef struct SHA256Context {
|
||||
uint32_t state[8];
|
||||
uint32_t count[2];
|
||||
unsigned char buf[64];
|
||||
} SHA256_CTX_Y;
|
||||
|
||||
typedef struct HMAC_SHA256Context {
|
||||
SHA256_CTX_Y ictx;
|
||||
SHA256_CTX_Y octx;
|
||||
} HMAC_SHA256_CTX_Y;
|
||||
|
||||
void SHA256_Init_Y(SHA256_CTX_Y *);
|
||||
void SHA256_Update_Y(SHA256_CTX_Y *, const void *, size_t);
|
||||
void SHA256_Final_Y(unsigned char [32], SHA256_CTX_Y *);
|
||||
void HMAC_SHA256_Init_Y(HMAC_SHA256_CTX_Y *, const void *, size_t);
|
||||
void HMAC_SHA256_Update_Y(HMAC_SHA256_CTX_Y *, const void *, size_t);
|
||||
void HMAC_SHA256_Final_Y(unsigned char [32], HMAC_SHA256_CTX_Y *);
|
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
||||
*/
|
||||
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
|
||||
uint64_t, uint8_t *, size_t);
|
||||
|
||||
#endif /* !_SHA256_H_ */
|
124
stratum/algos/sysendian.h
Executable file
124
stratum/algos/sysendian.h
Executable file
|
@ -0,0 +1,124 @@
|
|||
/*-
|
||||
* Copyright 2007-2009 Colin Percival
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
#ifndef _SYSENDIAN_H_
|
||||
#define _SYSENDIAN_H_
|
||||
|
||||
/* If we don't have be64enc, the <sys/endian.h> we have isn't usable. */
|
||||
#if !HAVE_DECL_BE64ENC
|
||||
#undef HAVE_SYS_ENDIAN_H
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_SYS_ENDIAN_H
|
||||
|
||||
#include <sys/endian.h>
|
||||
|
||||
#else
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
|
||||
|
||||
static inline uint64_t
|
||||
be64dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) +
|
||||
((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) +
|
||||
((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) +
|
||||
((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56));
|
||||
}
|
||||
|
||||
static inline void
|
||||
be64enc(void *pp, uint64_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[7] = x & 0xff;
|
||||
p[6] = (x >> 8) & 0xff;
|
||||
p[5] = (x >> 16) & 0xff;
|
||||
p[4] = (x >> 24) & 0xff;
|
||||
p[3] = (x >> 32) & 0xff;
|
||||
p[2] = (x >> 40) & 0xff;
|
||||
p[1] = (x >> 48) & 0xff;
|
||||
p[0] = (x >> 56) & 0xff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static inline uint64_t
|
||||
le64dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) +
|
||||
((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) +
|
||||
((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) +
|
||||
((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le64enc(void *pp, uint64_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[0] = x & 0xff;
|
||||
p[1] = (x >> 8) & 0xff;
|
||||
p[2] = (x >> 16) & 0xff;
|
||||
p[3] = (x >> 24) & 0xff;
|
||||
p[4] = (x >> 32) & 0xff;
|
||||
p[5] = (x >> 40) & 0xff;
|
||||
p[6] = (x >> 48) & 0xff;
|
||||
p[7] = (x >> 56) & 0xff;
|
||||
}
|
||||
|
||||
|
||||
static __inline uint32_t
|
||||
be32dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
|
||||
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
|
||||
}
|
||||
|
||||
static __inline void
|
||||
be32enc(void *pp, uint32_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[3] = x & 0xff;
|
||||
p[2] = (x >> 8) & 0xff;
|
||||
p[1] = (x >> 16) & 0xff;
|
||||
p[0] = (x >> 24) & 0xff;
|
||||
}
|
||||
|
||||
#endif /* !HAVE_SYS_ENDIAN_H */
|
||||
|
||||
#endif /* !_SYSENDIAN_H_ */
|
962
stratum/algos/yescrypt-opt.c
Executable file
962
stratum/algos/yescrypt-opt.c
Executable file
|
@ -0,0 +1,962 @@
|
|||
/*-
|
||||
* Copyright 2009 Colin Percival
|
||||
* Copyright 2013,2014 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
|
||||
#include <errno.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "sha256_Y.h"
|
||||
#include "sysendian.h"
|
||||
|
||||
#include "yescrypt-platform.c"
|
||||
|
||||
static inline uint32_t
|
||||
le32dec(const void *pp)
|
||||
{
|
||||
const uint8_t *p = (uint8_t const *)pp;
|
||||
|
||||
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
|
||||
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le32enc(void *pp, uint32_t x)
|
||||
{
|
||||
uint8_t * p = (uint8_t *)pp;
|
||||
|
||||
p[0] = x & 0xff;
|
||||
p[1] = (x >> 8) & 0xff;
|
||||
p[2] = (x >> 16) & 0xff;
|
||||
p[3] = (x >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static inline void
|
||||
blkcpy(uint64_t * dest, const uint64_t * src, size_t count)
|
||||
{
|
||||
do {
|
||||
*dest++ = *src++; *dest++ = *src++;
|
||||
*dest++ = *src++; *dest++ = *src++;
|
||||
} while (count -= 4);
|
||||
}
|
||||
|
||||
static inline void
|
||||
blkxor(uint64_t * dest, const uint64_t * src, size_t count)
|
||||
{
|
||||
do {
|
||||
*dest++ ^= *src++; *dest++ ^= *src++;
|
||||
*dest++ ^= *src++; *dest++ ^= *src++;
|
||||
} while (count -= 4);
|
||||
}
|
||||
|
||||
typedef union {
|
||||
uint32_t w[16];
|
||||
uint64_t d[8];
|
||||
} salsa20_blk_t;
|
||||
|
||||
static inline void
|
||||
salsa20_simd_shuffle(const salsa20_blk_t * Bin, salsa20_blk_t * Bout)
|
||||
{
|
||||
#define COMBINE(out, in1, in2) \
|
||||
Bout->d[out] = Bin->w[in1 * 2] | ((uint64_t)Bin->w[in2 * 2 + 1] << 32);
|
||||
COMBINE(0, 0, 2)
|
||||
COMBINE(1, 5, 7)
|
||||
COMBINE(2, 2, 4)
|
||||
COMBINE(3, 7, 1)
|
||||
COMBINE(4, 4, 6)
|
||||
COMBINE(5, 1, 3)
|
||||
COMBINE(6, 6, 0)
|
||||
COMBINE(7, 3, 5)
|
||||
#undef COMBINE
|
||||
}
|
||||
|
||||
static inline void
|
||||
salsa20_simd_unshuffle(const salsa20_blk_t * Bin, salsa20_blk_t * Bout)
|
||||
{
|
||||
#define COMBINE(out, in1, in2) \
|
||||
Bout->w[out * 2] = Bin->d[in1]; \
|
||||
Bout->w[out * 2 + 1] = Bin->d[in2] >> 32;
|
||||
COMBINE(0, 0, 6)
|
||||
COMBINE(1, 5, 3)
|
||||
COMBINE(2, 2, 0)
|
||||
COMBINE(3, 7, 5)
|
||||
COMBINE(4, 4, 2)
|
||||
COMBINE(5, 1, 7)
|
||||
COMBINE(6, 6, 4)
|
||||
COMBINE(7, 3, 1)
|
||||
#undef COMBINE
|
||||
}
|
||||
|
||||
/**
|
||||
* salsa20_8(B):
|
||||
* Apply the salsa20/8 core to the provided block.
|
||||
*/
|
||||
static void
|
||||
salsa20_8(uint64_t B[8])
|
||||
{
|
||||
size_t i;
|
||||
salsa20_blk_t X;
|
||||
#define x X.w
|
||||
|
||||
salsa20_simd_unshuffle((const salsa20_blk_t *)B, &X);
|
||||
|
||||
for (i = 0; i < 8; i += 2) {
|
||||
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
||||
/* Operate on columns */
|
||||
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
|
||||
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
|
||||
|
||||
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
|
||||
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
|
||||
|
||||
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
|
||||
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
|
||||
|
||||
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
|
||||
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
|
||||
|
||||
/* Operate on rows */
|
||||
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
|
||||
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
|
||||
|
||||
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
|
||||
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
|
||||
|
||||
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
|
||||
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
|
||||
|
||||
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
|
||||
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
|
||||
#undef R
|
||||
}
|
||||
#undef x
|
||||
|
||||
{
|
||||
salsa20_blk_t Y;
|
||||
salsa20_simd_shuffle(&X, &Y);
|
||||
for (i = 0; i < 16; i += 4) {
|
||||
((salsa20_blk_t *)B)->w[i] += Y.w[i];
|
||||
((salsa20_blk_t *)B)->w[i + 1] += Y.w[i + 1];
|
||||
((salsa20_blk_t *)B)->w[i + 2] += Y.w[i + 2];
|
||||
((salsa20_blk_t *)B)->w[i + 3] += Y.w[i + 3];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* blockmix_salsa8(Bin, Bout, X, r):
|
||||
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
|
||||
* bytes in length; the output Bout must also be the same size. The
|
||||
* temporary space X must be 64 bytes.
|
||||
*/
|
||||
static void
|
||||
blockmix_salsa8(const uint64_t * Bin, uint64_t * Bout, uint64_t * X, size_t r)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
/* 1: X <-- B_{2r - 1} */
|
||||
blkcpy(X, &Bin[(2 * r - 1) * 8], 8);
|
||||
|
||||
/* 2: for i = 0 to 2r - 1 do */
|
||||
for (i = 0; i < 2 * r; i += 2) {
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
blkxor(X, &Bin[i * 8], 8);
|
||||
salsa20_8(X);
|
||||
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
blkcpy(&Bout[i * 4], X, 8);
|
||||
|
||||
/* 3: X <-- H(X \xor B_i) */
|
||||
blkxor(X, &Bin[i * 8 + 8], 8);
|
||||
salsa20_8(X);
|
||||
|
||||
/* 4: Y_i <-- X */
|
||||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
||||
blkcpy(&Bout[i * 4 + r * 8], X, 8);
|
||||
}
|
||||
}
|
||||
|
||||
/* These are tunable */
|
||||
#define S_BITS 8
|
||||
#define S_SIMD 2
|
||||
#define S_P 4
|
||||
#define S_ROUNDS 6
|
||||
|
||||
/* Number of S-boxes. Not tunable, hard-coded in a few places. */
|
||||
#define S_N 2
|
||||
|
||||
/* Derived values. Not tunable on their own. */
|
||||
#define S_SIZE1 (1 << S_BITS)
|
||||
#define S_MASK ((S_SIZE1 - 1) * S_SIMD * 8)
|
||||
#define S_MASK2 (((uint64_t)S_MASK << 32) | S_MASK)
|
||||
#define S_SIZE_ALL (S_N * S_SIZE1 * S_SIMD)
|
||||
#define S_P_SIZE (S_P * S_SIMD)
|
||||
#define S_MIN_R ((S_P * S_SIMD + 15) / 16)
|
||||
|
||||
/**
|
||||
* pwxform(B):
|
||||
* Transform the provided block using the provided S-boxes.
|
||||
*/
|
||||
static void
|
||||
block_pwxform(uint64_t * B, const uint64_t * S)
|
||||
{
|
||||
uint64_t (*X)[S_SIMD] = (uint64_t (*)[S_SIMD])B;
|
||||
const uint8_t *S0 = (const uint8_t *)S;
|
||||
const uint8_t *S1 = (const uint8_t *)(S + S_SIZE1 * S_SIMD);
|
||||
size_t i, j;
|
||||
#if S_SIMD > 2
|
||||
size_t k;
|
||||
#endif
|
||||
|
||||
for (j = 0; j < S_P; j++) {
|
||||
uint64_t *Xj = X[j];
|
||||
uint64_t x0 = Xj[0];
|
||||
#if S_SIMD > 1
|
||||
uint64_t x1 = Xj[1];
|
||||
#endif
|
||||
|
||||
for (i = 0; i < S_ROUNDS; i++) {
|
||||
uint64_t x = x0 & S_MASK2;
|
||||
const uint64_t *p0, *p1;
|
||||
|
||||
p0 = (const uint64_t *)(S0 + (uint32_t)x);
|
||||
p1 = (const uint64_t *)(S1 + (x >> 32));
|
||||
|
||||
x0 = (uint64_t)(x0 >> 32) * (uint32_t)x0;
|
||||
x0 += p0[0];
|
||||
x0 ^= p1[0];
|
||||
|
||||
#if S_SIMD > 1
|
||||
x1 = (uint64_t)(x1 >> 32) * (uint32_t)x1;
|
||||
x1 += p0[1];
|
||||
x1 ^= p1[1];
|
||||
#endif
|
||||
|
||||
#if S_SIMD > 2
|
||||
for (k = 2; k < S_SIMD; k++) {
|
||||
x = Xj[k];
|
||||
|
||||
x = (uint64_t)(x >> 32) * (uint32_t)x;
|
||||
x += p0[k];
|
||||
x ^= p1[k];
|
||||
|
||||
Xj[k] = x;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Xj[0] = x0;
|
||||
#if S_SIMD > 1
|
||||
Xj[1] = x1;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* blockmix_pwxform(Bin, Bout, S, r):
|
||||
* Compute Bout = BlockMix_pwxform{salsa20/8, S, r}(Bin). The input Bin must
|
||||
* be 128r bytes in length; the output Bout must also be the same size.
|
||||
*
|
||||
* S lacks const qualifier to match blockmix_salsa8()'s prototype, which we
|
||||
* need to refer to both functions via the same function pointers.
|
||||
*/
|
||||
static void
|
||||
blockmix_pwxform(const uint64_t * Bin, uint64_t * Bout, uint64_t * S, size_t r)
|
||||
{
|
||||
size_t r1, r2, i;
|
||||
|
||||
/* Convert 128-byte blocks to (S_P_SIZE * 64-bit) blocks */
|
||||
r1 = r * 128 / (S_P_SIZE * 8);
|
||||
|
||||
/* X <-- B_{r1 - 1} */
|
||||
blkcpy(Bout, &Bin[(r1 - 1) * S_P_SIZE], S_P_SIZE);
|
||||
|
||||
/* X <-- X \xor B_i */
|
||||
blkxor(Bout, Bin, S_P_SIZE);
|
||||
|
||||
/* X <-- H'(X) */
|
||||
/* B'_i <-- X */
|
||||
block_pwxform(Bout, S);
|
||||
|
||||
/* for i = 0 to r1 - 1 do */
|
||||
for (i = 1; i < r1; i++) {
|
||||
/* X <-- X \xor B_i */
|
||||
blkcpy(&Bout[i * S_P_SIZE], &Bout[(i - 1) * S_P_SIZE],
|
||||
S_P_SIZE);
|
||||
blkxor(&Bout[i * S_P_SIZE], &Bin[i * S_P_SIZE], S_P_SIZE);
|
||||
|
||||
/* X <-- H'(X) */
|
||||
/* B'_i <-- X */
|
||||
block_pwxform(&Bout[i * S_P_SIZE], S);
|
||||
}
|
||||
|
||||
/* Handle partial blocks */
|
||||
if (i * S_P_SIZE < r * 16)
|
||||
blkcpy(&Bout[i * S_P_SIZE], &Bin[i * S_P_SIZE],
|
||||
r * 16 - i * S_P_SIZE);
|
||||
|
||||
i = (r1 - 1) * S_P_SIZE / 8;
|
||||
/* Convert 128-byte blocks to 64-byte blocks */
|
||||
r2 = r * 2;
|
||||
|
||||
/* B'_i <-- H(B'_i) */
|
||||
salsa20_8(&Bout[i * 8]);
|
||||
i++;
|
||||
|
||||
for (; i < r2; i++) {
|
||||
/* B'_i <-- H(B'_i \xor B'_{i-1}) */
|
||||
blkxor(&Bout[i * 8], &Bout[(i - 1) * 8], 8);
|
||||
salsa20_8(&Bout[i * 8]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* integerify(B, r):
|
||||
* Return the result of parsing B_{2r-1} as a little-endian integer.
|
||||
*/
|
||||
static inline uint64_t
|
||||
integerify(const uint64_t * B, size_t r)
|
||||
{
|
||||
/*
|
||||
* Our 64-bit words are in host byte order, and word 6 holds the second 32-bit
|
||||
* word of B_{2r-1} due to SIMD shuffling. The 64-bit value we return is also
|
||||
* in host byte order, as it should be.
|
||||
*/
|
||||
const uint64_t * X = &B[(2 * r - 1) * 8];
|
||||
uint32_t lo = X[0];
|
||||
uint32_t hi = X[6] >> 32;
|
||||
return ((uint64_t)hi << 32) + lo;
|
||||
}
|
||||
|
||||
/**
|
||||
* smix1(B, r, N, flags, V, NROM, shared, XY, S):
|
||||
* Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in
|
||||
* length; the temporary storage V must be 128rN bytes in length; the temporary
|
||||
* storage XY must be 256r + 64 bytes in length. The value N must be even and
|
||||
* no smaller than 2.
|
||||
*/
|
||||
static void
|
||||
smix1(uint64_t * B, size_t r, uint64_t N, yescrypt_flags_t flags,
|
||||
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
|
||||
uint64_t * XY, uint64_t * S)
|
||||
{
|
||||
void (*blockmix)(const uint64_t *, uint64_t *, uint64_t *, size_t) =
|
||||
(S ? blockmix_pwxform : blockmix_salsa8);
|
||||
const uint64_t * VROM = shared->shared1.aligned;
|
||||
uint32_t VROM_mask = shared->mask1;
|
||||
size_t s = 16 * r;
|
||||
uint64_t * X = V;
|
||||
uint64_t * Y = &XY[s];
|
||||
uint64_t * Z = S ? S : &XY[2 * s];
|
||||
uint64_t n, i, j;
|
||||
size_t k;
|
||||
|
||||
/* 1: X <-- B */
|
||||
/* 3: V_i <-- X */
|
||||
for (i = 0; i < 2 * r; i++) {
|
||||
const salsa20_blk_t *src = (const salsa20_blk_t *)&B[i * 8];
|
||||
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
|
||||
salsa20_blk_t *dst = (salsa20_blk_t *)&X[i * 8];
|
||||
for (k = 0; k < 16; k++)
|
||||
tmp->w[k] = le32dec(&src->w[k]);
|
||||
salsa20_simd_shuffle(tmp, dst);
|
||||
}
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
/* 3: V_i <-- X */
|
||||
blockmix(X, Y, Z, r);
|
||||
blkcpy(&V[s], Y, s);
|
||||
|
||||
X = XY;
|
||||
|
||||
if (NROM && (VROM_mask & 1)) {
|
||||
if ((1 & VROM_mask) == 1) {
|
||||
/* j <-- Integerify(X) mod NROM */
|
||||
j = integerify(Y, r) & (NROM - 1);
|
||||
|
||||
/* X <-- H(X \xor VROM_j) */
|
||||
blkxor(Y, &VROM[j * s], s);
|
||||
}
|
||||
|
||||
blockmix(Y, X, Z, r);
|
||||
|
||||
/* 2: for i = 0 to N - 1 do */
|
||||
for (n = 1, i = 2; i < N; i += 2) {
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[i * s], X, s);
|
||||
|
||||
if ((i & (i - 1)) == 0)
|
||||
n <<= 1;
|
||||
|
||||
/* j <-- Wrap(Integerify(X), i) */
|
||||
j = integerify(X, r) & (n - 1);
|
||||
j += i - n;
|
||||
|
||||
/* X <-- X \xor V_j */
|
||||
blkxor(X, &V[j * s], s);
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix(X, Y, Z, r);
|
||||
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[(i + 1) * s], Y, s);
|
||||
|
||||
j = integerify(Y, r);
|
||||
if (((i + 1) & VROM_mask) == 1) {
|
||||
/* j <-- Integerify(X) mod NROM */
|
||||
j &= NROM - 1;
|
||||
|
||||
/* X <-- H(X \xor VROM_j) */
|
||||
blkxor(Y, &VROM[j * s], s);
|
||||
} else {
|
||||
/* j <-- Wrap(Integerify(X), i) */
|
||||
j &= n - 1;
|
||||
j += i + 1 - n;
|
||||
|
||||
/* X <-- H(X \xor V_j) */
|
||||
blkxor(Y, &V[j * s], s);
|
||||
}
|
||||
|
||||
blockmix(Y, X, Z, r);
|
||||
}
|
||||
} else {
|
||||
yescrypt_flags_t rw = flags & YESCRYPT_RW;
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix(Y, X, Z, r);
|
||||
|
||||
/* 2: for i = 0 to N - 1 do */
|
||||
for (n = 1, i = 2; i < N; i += 2) {
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[i * s], X, s);
|
||||
|
||||
if (rw) {
|
||||
if ((i & (i - 1)) == 0)
|
||||
n <<= 1;
|
||||
|
||||
/* j <-- Wrap(Integerify(X), i) */
|
||||
j = integerify(X, r) & (n - 1);
|
||||
j += i - n;
|
||||
|
||||
/* X <-- X \xor V_j */
|
||||
blkxor(X, &V[j * s], s);
|
||||
}
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix(X, Y, Z, r);
|
||||
|
||||
/* 3: V_i <-- X */
|
||||
blkcpy(&V[(i + 1) * s], Y, s);
|
||||
|
||||
if (rw) {
|
||||
/* j <-- Wrap(Integerify(X), i) */
|
||||
j = integerify(Y, r) & (n - 1);
|
||||
j += (i + 1) - n;
|
||||
|
||||
/* X <-- X \xor V_j */
|
||||
blkxor(Y, &V[j * s], s);
|
||||
}
|
||||
|
||||
/* 4: X <-- H(X) */
|
||||
blockmix(Y, X, Z, r);
|
||||
}
|
||||
}
|
||||
|
||||
/* B' <-- X */
|
||||
for (i = 0; i < 2 * r; i++) {
|
||||
const salsa20_blk_t *src = (const salsa20_blk_t *)&X[i * 8];
|
||||
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
|
||||
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 8];
|
||||
for (k = 0; k < 16; k++)
|
||||
le32enc(&tmp->w[k], src->w[k]);
|
||||
salsa20_simd_unshuffle(tmp, dst);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* smix2(B, r, N, Nloop, flags, V, NROM, shared, XY, S):
|
||||
* Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in
|
||||
* length; the temporary storage V must be 128rN bytes in length; the temporary
|
||||
* storage XY must be 256r + 64 bytes in length. The value N must be a
|
||||
* power of 2 greater than 1. The value Nloop must be even.
|
||||
*/
|
||||
static void
|
||||
smix2(uint64_t * B, size_t r, uint64_t N, uint64_t Nloop,
|
||||
yescrypt_flags_t flags,
|
||||
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
|
||||
uint64_t * XY, uint64_t * S)
|
||||
{
|
||||
void (*blockmix)(const uint64_t *, uint64_t *, uint64_t *, size_t) =
|
||||
(S ? blockmix_pwxform : blockmix_salsa8);
|
||||
const uint64_t * VROM = shared->shared1.aligned;
|
||||
uint32_t VROM_mask = shared->mask1 | 1;
|
||||
size_t s = 16 * r;
|
||||
yescrypt_flags_t rw = flags & YESCRYPT_RW;
|
||||
uint64_t * X = XY;
|
||||
uint64_t * Y = &XY[s];
|
||||
uint64_t * Z = S ? S : &XY[2 * s];
|
||||
uint64_t i, j;
|
||||
size_t k;
|
||||
|
||||
if (Nloop == 0)
|
||||
return;
|
||||
|
||||
/* X <-- B' */
|
||||
for (i = 0; i < 2 * r; i++) {
|
||||
const salsa20_blk_t *src = (const salsa20_blk_t *)&B[i * 8];
|
||||
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
|
||||
salsa20_blk_t *dst = (salsa20_blk_t *)&X[i * 8];
|
||||
for (k = 0; k < 16; k++)
|
||||
tmp->w[k] = le32dec(&src->w[k]);
|
||||
salsa20_simd_shuffle(tmp, dst);
|
||||
}
|
||||
|
||||
if (NROM) {
|
||||
/* 6: for i = 0 to N - 1 do */
|
||||
for (i = 0; i < Nloop; i += 2) {
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(X, r) & (N - 1);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(X, &V[j * s], s);
|
||||
/* V_j <-- Xprev \xor V_j */
|
||||
if (rw)
|
||||
blkcpy(&V[j * s], X, s);
|
||||
blockmix(X, Y, Z, r);
|
||||
|
||||
j = integerify(Y, r);
|
||||
if (((i + 1) & VROM_mask) == 1) {
|
||||
/* j <-- Integerify(X) mod NROM */
|
||||
j &= NROM - 1;
|
||||
|
||||
/* X <-- H(X \xor VROM_j) */
|
||||
blkxor(Y, &VROM[j * s], s);
|
||||
} else {
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j &= N - 1;
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(Y, &V[j * s], s);
|
||||
/* V_j <-- Xprev \xor V_j */
|
||||
if (rw)
|
||||
blkcpy(&V[j * s], Y, s);
|
||||
}
|
||||
|
||||
blockmix(Y, X, Z, r);
|
||||
}
|
||||
} else {
|
||||
/* 6: for i = 0 to N - 1 do */
|
||||
i = Nloop / 2;
|
||||
do {
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(X, r) & (N - 1);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(X, &V[j * s], s);
|
||||
/* V_j <-- Xprev \xor V_j */
|
||||
if (rw)
|
||||
blkcpy(&V[j * s], X, s);
|
||||
blockmix(X, Y, Z, r);
|
||||
|
||||
/* 7: j <-- Integerify(X) mod N */
|
||||
j = integerify(Y, r) & (N - 1);
|
||||
|
||||
/* 8: X <-- H(X \xor V_j) */
|
||||
blkxor(Y, &V[j * s], s);
|
||||
/* V_j <-- Xprev \xor V_j */
|
||||
if (rw)
|
||||
blkcpy(&V[j * s], Y, s);
|
||||
blockmix(Y, X, Z, r);
|
||||
} while (--i);
|
||||
}
|
||||
|
||||
/* 10: B' <-- X */
|
||||
for (i = 0; i < 2 * r; i++) {
|
||||
const salsa20_blk_t *src = (const salsa20_blk_t *)&X[i * 8];
|
||||
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
|
||||
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 8];
|
||||
for (k = 0; k < 16; k++)
|
||||
le32enc(&tmp->w[k], src->w[k]);
|
||||
salsa20_simd_unshuffle(tmp, dst);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* p2floor(x):
|
||||
* Largest power of 2 not greater than argument.
|
||||
*/
|
||||
static uint64_t
|
||||
p2floor(uint64_t x)
|
||||
{
|
||||
uint64_t y;
|
||||
while ((y = x & (x - 1)))
|
||||
x = y;
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
* smix(B, r, N, p, t, flags, V, NROM, shared, XY, S):
|
||||
* Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the
|
||||
* temporary storage V must be 128rN bytes in length; the temporary storage
|
||||
* XY must be 256r+64 or (256r+64)*p bytes in length (the larger size is
|
||||
* required with OpenMP-enabled builds). The value N must be a power of 2
|
||||
* greater than 1.
|
||||
*/
|
||||
static void
|
||||
smix(uint64_t * B, size_t r, uint64_t N, uint32_t p, uint32_t t,
|
||||
yescrypt_flags_t flags,
|
||||
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
|
||||
uint64_t * XY, uint64_t * S)
|
||||
{
|
||||
size_t s = 16 * r;
|
||||
uint64_t Nchunk = N / p, Nloop_all, Nloop_rw;
|
||||
uint32_t i;
|
||||
|
||||
Nloop_all = Nchunk;
|
||||
if (flags & YESCRYPT_RW) {
|
||||
if (t <= 1) {
|
||||
if (t)
|
||||
Nloop_all *= 2; /* 2/3 */
|
||||
Nloop_all = (Nloop_all + 2) / 3; /* 1/3, round up */
|
||||
} else {
|
||||
Nloop_all *= t - 1;
|
||||
}
|
||||
} else if (t) {
|
||||
if (t == 1)
|
||||
Nloop_all += (Nloop_all + 1) / 2; /* 1.5, round up */
|
||||
Nloop_all *= t;
|
||||
}
|
||||
|
||||
Nloop_rw = 0;
|
||||
if (flags & __YESCRYPT_INIT_SHARED)
|
||||
Nloop_rw = Nloop_all;
|
||||
else if (flags & YESCRYPT_RW)
|
||||
Nloop_rw = Nloop_all / p;
|
||||
|
||||
Nchunk &= ~(uint64_t)1; /* round down to even */
|
||||
Nloop_all++; Nloop_all &= ~(uint64_t)1; /* round up to even */
|
||||
Nloop_rw &= ~(uint64_t)1; /* round down to even */
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel if (p > 1) default(none) private(i) shared(B, r, N, p, flags, V, NROM, shared, XY, S, s, Nchunk, Nloop_all, Nloop_rw)
|
||||
{
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < p; i++) {
|
||||
uint64_t Vchunk = i * Nchunk;
|
||||
uint64_t * Bp = &B[i * s];
|
||||
uint64_t * Vp = &V[Vchunk * s];
|
||||
#ifdef _OPENMP
|
||||
uint64_t * XYp = &XY[i * (2 * s + 8)];
|
||||
#else
|
||||
uint64_t * XYp = XY;
|
||||
#endif
|
||||
uint64_t Np = (i < p - 1) ? Nchunk : (N - Vchunk);
|
||||
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
|
||||
if (Sp)
|
||||
smix1(Bp, 1, S_SIZE_ALL / 16,
|
||||
flags & ~YESCRYPT_PWXFORM,
|
||||
Sp, NROM, shared, XYp, NULL);
|
||||
if (!(flags & __YESCRYPT_INIT_SHARED_2))
|
||||
smix1(Bp, r, Np, flags, Vp, NROM, shared, XYp, Sp);
|
||||
smix2(Bp, r, p2floor(Np), Nloop_rw, flags, Vp,
|
||||
NROM, shared, XYp, Sp);
|
||||
}
|
||||
|
||||
if (Nloop_all > Nloop_rw) {
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < p; i++) {
|
||||
uint64_t * Bp = &B[i * s];
|
||||
#ifdef _OPENMP
|
||||
uint64_t * XYp = &XY[i * (2 * s + 8)];
|
||||
#else
|
||||
uint64_t * XYp = XY;
|
||||
#endif
|
||||
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
|
||||
smix2(Bp, r, N, Nloop_all - Nloop_rw,
|
||||
flags & ~YESCRYPT_RW, V, NROM, shared, XYp, Sp);
|
||||
}
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen,
|
||||
* N, r, p, t, flags, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen), or a revision of scrypt as requested by flags and shared, and
|
||||
* write the result into buf. The parameters r, p, and buflen must satisfy
|
||||
* r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N must be a power
|
||||
* of 2 greater than 1.
|
||||
*
|
||||
* t controls computation time while not affecting peak memory usage. shared
|
||||
* and flags may request special modes as described in yescrypt.h. local is
|
||||
* the thread-local data structure, allowing to preserve and reuse a memory
|
||||
* allocation across calls, thereby reducing its overhead.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*/
|
||||
int
|
||||
yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
|
||||
const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * salt, size_t saltlen,
|
||||
uint64_t N, uint32_t r, uint32_t p, uint32_t t, yescrypt_flags_t flags,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
yescrypt_region_t tmp;
|
||||
uint64_t NROM;
|
||||
size_t B_size, V_size, XY_size, need;
|
||||
uint64_t * B, * V, * XY, * S;
|
||||
uint64_t sha256[4];
|
||||
|
||||
/*
|
||||
* YESCRYPT_PARALLEL_SMIX is a no-op at p = 1 for its intended purpose,
|
||||
* so don't let it have side-effects. Without this adjustment, it'd
|
||||
* enable the SHA-256 password pre-hashing and output post-hashing,
|
||||
* because any deviation from classic scrypt implies those.
|
||||
*/
|
||||
if (p == 1)
|
||||
flags &= ~YESCRYPT_PARALLEL_SMIX;
|
||||
|
||||
/* Sanity-check parameters */
|
||||
if (flags & ~YESCRYPT_KNOWN_FLAGS) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
#if SIZE_MAX > UINT32_MAX
|
||||
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
if (((N & (N - 1)) != 0) || (N <= 1) || (r < 1) || (p < 1)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
if ((flags & YESCRYPT_PARALLEL_SMIX) && (N / p <= 1)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
#if S_MIN_R > 1
|
||||
if ((flags & YESCRYPT_PWXFORM) && (r < S_MIN_R)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
if ((p > SIZE_MAX / ((size_t)256 * r + 64)) ||
|
||||
#if SIZE_MAX / 256 <= UINT32_MAX
|
||||
(r > SIZE_MAX / 256) ||
|
||||
#endif
|
||||
(N > SIZE_MAX / 128 / r)) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
if (N > UINT64_MAX / ((uint64_t)t + 1)) {
|
||||
errno = EFBIG;
|
||||
return -1;
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
if (!(flags & YESCRYPT_PARALLEL_SMIX) &&
|
||||
(N > SIZE_MAX / 128 / (r * p))) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
if ((flags & YESCRYPT_PWXFORM) &&
|
||||
#ifndef _OPENMP
|
||||
(flags & YESCRYPT_PARALLEL_SMIX) &&
|
||||
#endif
|
||||
p > SIZE_MAX / (S_SIZE_ALL * sizeof(*S))) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
|
||||
NROM = 0;
|
||||
if (shared->shared1.aligned) {
|
||||
NROM = shared->shared1.aligned_size / ((size_t)128 * r);
|
||||
if (((NROM & (NROM - 1)) != 0) || (NROM <= 1) ||
|
||||
!(flags & YESCRYPT_RW)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate memory */
|
||||
V = NULL;
|
||||
V_size = (size_t)128 * r * N;
|
||||
#ifdef _OPENMP
|
||||
if (!(flags & YESCRYPT_PARALLEL_SMIX))
|
||||
V_size *= p;
|
||||
#endif
|
||||
need = V_size;
|
||||
if (flags & __YESCRYPT_INIT_SHARED) {
|
||||
if (local->aligned_size < need) {
|
||||
if (local->base || local->aligned ||
|
||||
local->base_size || local->aligned_size) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
if (!alloc_region(local, need))
|
||||
return -1;
|
||||
}
|
||||
V = (uint64_t *)local->aligned;
|
||||
need = 0;
|
||||
}
|
||||
B_size = (size_t)128 * r * p;
|
||||
need += B_size;
|
||||
if (need < B_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
XY_size = (size_t)256 * r + 64;
|
||||
#ifdef _OPENMP
|
||||
XY_size *= p;
|
||||
#endif
|
||||
need += XY_size;
|
||||
if (need < XY_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
if (flags & YESCRYPT_PWXFORM) {
|
||||
size_t S_size = S_SIZE_ALL * sizeof(*S);
|
||||
#ifdef _OPENMP
|
||||
S_size *= p;
|
||||
#else
|
||||
if (flags & YESCRYPT_PARALLEL_SMIX)
|
||||
S_size *= p;
|
||||
#endif
|
||||
need += S_size;
|
||||
if (need < S_size) {
|
||||
errno = ENOMEM;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (flags & __YESCRYPT_INIT_SHARED) {
|
||||
if (!alloc_region(&tmp, need))
|
||||
return -1;
|
||||
B = (uint64_t *)tmp.aligned;
|
||||
XY = (uint64_t *)((uint8_t *)B + B_size);
|
||||
} else {
|
||||
init_region(&tmp);
|
||||
if (local->aligned_size < need) {
|
||||
if (free_region(local))
|
||||
return -1;
|
||||
if (!alloc_region(local, need))
|
||||
return -1;
|
||||
}
|
||||
B = (uint64_t *)local->aligned;
|
||||
V = (uint64_t *)((uint8_t *)B + B_size);
|
||||
XY = (uint64_t *)((uint8_t *)V + V_size);
|
||||
}
|
||||
S = NULL;
|
||||
if (flags & YESCRYPT_PWXFORM)
|
||||
S = (uint64_t *)((uint8_t *)XY + XY_size);
|
||||
|
||||
if (t || flags) {
|
||||
SHA256_CTX_Y ctx;
|
||||
SHA256_Init_Y(&ctx);
|
||||
SHA256_Update_Y(&ctx, passwd, passwdlen);
|
||||
SHA256_Final_Y((uint8_t *)sha256, &ctx);
|
||||
passwd = (uint8_t *)sha256;
|
||||
passwdlen = sizeof(sha256);
|
||||
}
|
||||
|
||||
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1,
|
||||
(uint8_t *)B, B_size);
|
||||
|
||||
if (t || flags)
|
||||
blkcpy(sha256, B, sizeof(sha256) / sizeof(sha256[0]));
|
||||
|
||||
if (p == 1 || (flags & YESCRYPT_PARALLEL_SMIX)) {
|
||||
smix(B, r, N, p, t, flags, V, NROM, shared, XY, S);
|
||||
} else {
|
||||
uint32_t i;
|
||||
|
||||
/* 2: for i = 0 to p - 1 do */
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for default(none) private(i) shared(B, r, N, p, t, flags, V, NROM, shared, XY, S)
|
||||
#endif
|
||||
for (i = 0; i < p; i++) {
|
||||
/* 3: B_i <-- MF(B_i, N) */
|
||||
#ifdef _OPENMP
|
||||
smix(&B[(size_t)16 * r * i], r, N, 1, t, flags,
|
||||
&V[(size_t)16 * r * i * N],
|
||||
NROM, shared,
|
||||
&XY[((size_t)32 * r + 8) * i],
|
||||
S ? &S[S_SIZE_ALL * i] : S);
|
||||
#else
|
||||
smix(&B[(size_t)16 * r * i], r, N, 1, t, flags, V,
|
||||
NROM, shared, XY, S);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
||||
PBKDF2_SHA256(passwd, passwdlen, (uint8_t *)B, B_size, 1, buf, buflen);
|
||||
|
||||
/*
|
||||
* Except when computing classic scrypt, allow all computation so far
|
||||
* to be performed on the client. The final steps below match those of
|
||||
* SCRAM (RFC 5802), so that an extension of SCRAM (with the steps so
|
||||
* far in place of SCRAM's use of PBKDF2 and with SHA-256 in place of
|
||||
* SCRAM's use of SHA-1) would be usable with yescrypt hashes.
|
||||
*/
|
||||
if ((t || flags) && buflen == sizeof(sha256)) {
|
||||
/* Compute ClientKey */
|
||||
{
|
||||
HMAC_SHA256_CTX_Y ctx;
|
||||
HMAC_SHA256_Init_Y(&ctx, buf, buflen);
|
||||
HMAC_SHA256_Update_Y(&ctx, salt, saltlen);
|
||||
HMAC_SHA256_Final_Y((uint8_t *)sha256, &ctx);
|
||||
}
|
||||
/* Compute StoredKey */
|
||||
{
|
||||
SHA256_CTX_Y ctx;
|
||||
SHA256_Init_Y(&ctx);
|
||||
SHA256_Update_Y(&ctx, (uint8_t *)sha256, sizeof(sha256));
|
||||
SHA256_Final_Y(buf, &ctx);
|
||||
}
|
||||
}
|
||||
|
||||
if (free_region(&tmp))
|
||||
return -1;
|
||||
|
||||
/* Success! */
|
||||
return 0;
|
||||
}
|
191
stratum/algos/yescrypt-platform.c
Executable file
191
stratum/algos/yescrypt-platform.c
Executable file
|
@ -0,0 +1,191 @@
|
|||
/*-
|
||||
* Copyright 2013,2014 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/mman.h>
|
||||
#include "yescrypt.h"
|
||||
#define HUGEPAGE_THRESHOLD (12 * 1024 * 1024)
|
||||
|
||||
#ifdef __x86_64__
|
||||
#define HUGEPAGE_SIZE (2 * 1024 * 1024)
|
||||
#else
|
||||
#undef HUGEPAGE_SIZE
|
||||
#endif
|
||||
|
||||
static void *
|
||||
alloc_region(yescrypt_region_t * region, size_t size)
|
||||
{
|
||||
size_t base_size = size;
|
||||
uint8_t * base, * aligned;
|
||||
#ifdef MAP_ANON
|
||||
int flags =
|
||||
#ifdef MAP_NOCORE
|
||||
MAP_NOCORE |
|
||||
#endif
|
||||
MAP_ANON | MAP_PRIVATE;
|
||||
#if defined(MAP_HUGETLB) && defined(HUGEPAGE_SIZE)
|
||||
size_t new_size = size;
|
||||
const size_t hugepage_mask = (size_t)HUGEPAGE_SIZE - 1;
|
||||
if (size >= HUGEPAGE_THRESHOLD && size + hugepage_mask >= size) {
|
||||
flags |= MAP_HUGETLB;
|
||||
/*
|
||||
* Linux's munmap() fails on MAP_HUGETLB mappings if size is not a multiple of
|
||||
* huge page size, so let's round up to huge page size here.
|
||||
*/
|
||||
new_size = size + hugepage_mask;
|
||||
new_size &= ~hugepage_mask;
|
||||
}
|
||||
base = mmap(NULL, new_size, PROT_READ | PROT_WRITE, flags, -1, 0);
|
||||
if (base != MAP_FAILED) {
|
||||
base_size = new_size;
|
||||
} else
|
||||
if (flags & MAP_HUGETLB) {
|
||||
flags &= ~MAP_HUGETLB;
|
||||
base = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
|
||||
}
|
||||
|
||||
#else
|
||||
base = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
|
||||
#endif
|
||||
if (base == MAP_FAILED)
|
||||
base = NULL;
|
||||
aligned = base;
|
||||
#elif defined(HAVE_POSIX_MEMALIGN)
|
||||
if ((errno = posix_memalign((void **)&base, 64, size)) != 0)
|
||||
base = NULL;
|
||||
aligned = base;
|
||||
#else
|
||||
base = aligned = NULL;
|
||||
if (size + 63 < size) {
|
||||
errno = ENOMEM;
|
||||
} else if ((base = malloc(size + 63)) != NULL) {
|
||||
aligned = base + 63;
|
||||
aligned -= (uintptr_t)aligned & 63;
|
||||
}
|
||||
#endif
|
||||
region->base = base;
|
||||
region->aligned = aligned;
|
||||
region->base_size = base ? base_size : 0;
|
||||
region->aligned_size = base ? size : 0;
|
||||
return aligned;
|
||||
}
|
||||
|
||||
static inline void
|
||||
init_region(yescrypt_region_t * region)
|
||||
{
|
||||
region->base = region->aligned = NULL;
|
||||
region->base_size = region->aligned_size = 0;
|
||||
}
|
||||
|
||||
static int
|
||||
free_region(yescrypt_region_t * region)
|
||||
{
|
||||
if (region->base) {
|
||||
#ifdef MAP_ANON
|
||||
if (munmap(region->base, region->base_size))
|
||||
return -1;
|
||||
#else
|
||||
free(region->base);
|
||||
#endif
|
||||
}
|
||||
init_region(region);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
yescrypt_init_shared(yescrypt_shared_t * shared,
|
||||
const uint8_t * param, size_t paramlen,
|
||||
uint64_t N, uint32_t r, uint32_t p,
|
||||
yescrypt_init_shared_flags_t flags, uint32_t mask,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
yescrypt_shared1_t * shared1 = &shared->shared1;
|
||||
yescrypt_shared_t dummy, half1, half2;
|
||||
uint8_t salt[32];
|
||||
|
||||
if (flags & YESCRYPT_SHARED_PREALLOCATED) {
|
||||
if (!shared1->aligned || !shared1->aligned_size)
|
||||
return -1;
|
||||
} else {
|
||||
init_region(shared1);
|
||||
}
|
||||
shared->mask1 = 1;
|
||||
if (!param && !paramlen && !N && !r && !p && !buf && !buflen)
|
||||
return 0;
|
||||
|
||||
init_region(&dummy.shared1);
|
||||
dummy.mask1 = 1;
|
||||
if (yescrypt_kdf(&dummy, shared1,
|
||||
param, paramlen, NULL, 0, N, r, p, 0,
|
||||
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
|
||||
salt, sizeof(salt)))
|
||||
goto out;
|
||||
|
||||
half1 = half2 = *shared;
|
||||
half1.shared1.aligned_size /= 2;
|
||||
half2.shared1.aligned += half1.shared1.aligned_size;
|
||||
half2.shared1.aligned_size = half1.shared1.aligned_size;
|
||||
N /= 2;
|
||||
|
||||
if (p > 1 && yescrypt_kdf(&half1, &half2.shared1,
|
||||
param, paramlen, salt, sizeof(salt), N, r, p, 0,
|
||||
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_2,
|
||||
salt, sizeof(salt)))
|
||||
goto out;
|
||||
|
||||
if (yescrypt_kdf(&half2, &half1.shared1,
|
||||
param, paramlen, salt, sizeof(salt), N, r, p, 0,
|
||||
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
|
||||
salt, sizeof(salt)))
|
||||
goto out;
|
||||
|
||||
if (yescrypt_kdf(&half1, &half2.shared1,
|
||||
param, paramlen, salt, sizeof(salt), N, r, p, 0,
|
||||
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
|
||||
buf, buflen))
|
||||
goto out;
|
||||
|
||||
shared->mask1 = mask;
|
||||
|
||||
return 0;
|
||||
|
||||
out:
|
||||
if (!(flags & YESCRYPT_SHARED_PREALLOCATED))
|
||||
free_region(shared1);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int
|
||||
yescrypt_free_shared(yescrypt_shared_t * shared)
|
||||
{
|
||||
return free_region(&shared->shared1);
|
||||
}
|
||||
|
||||
int
|
||||
yescrypt_init_local(yescrypt_local_t * local)
|
||||
{
|
||||
init_region(local);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
yescrypt_free_local(yescrypt_local_t * local)
|
||||
{
|
||||
return free_region(local);
|
||||
}
|
366
stratum/algos/yescrypt.c
Normal file
366
stratum/algos/yescrypt.c
Normal file
|
@ -0,0 +1,366 @@
|
|||
/*-
|
||||
* Copyright 2013,2014 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "yescrypt.h"
|
||||
|
||||
#define BYTES2CHARS(bytes) \
|
||||
((((bytes) * 8) + 5) / 6)
|
||||
|
||||
#define HASH_SIZE 32 /* bytes */
|
||||
#define HASH_LEN BYTES2CHARS(HASH_SIZE) /* base-64 chars */
|
||||
#define YESCRYPT_FLAGS (YESCRYPT_RW | YESCRYPT_PWXFORM)
|
||||
|
||||
static const char * const itoa64 =
|
||||
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
static uint8_t* encode64_uint32(uint8_t* dst, size_t dstlen, uint32_t src, uint32_t srcbits)
|
||||
{
|
||||
uint32_t bit;
|
||||
|
||||
for (bit = 0; bit < srcbits; bit += 6) {
|
||||
if (dstlen < 1)
|
||||
return NULL;
|
||||
*dst++ = itoa64[src & 0x3f];
|
||||
dstlen--;
|
||||
src >>= 6;
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
static uint8_t* encode64(uint8_t* dst, size_t dstlen, const uint8_t* src, size_t srclen)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < srclen; ) {
|
||||
uint8_t * dnext;
|
||||
uint32_t value = 0, bits = 0;
|
||||
do {
|
||||
value |= (uint32_t)src[i++] << bits;
|
||||
bits += 8;
|
||||
} while (bits < 24 && i < srclen);
|
||||
dnext = encode64_uint32(dst, dstlen, value, bits);
|
||||
if (!dnext)
|
||||
return NULL;
|
||||
dstlen -= dnext - dst;
|
||||
dst = dnext;
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
static int decode64_one(uint32_t* dst, uint8_t src)
|
||||
{
|
||||
const char * ptr = strchr(itoa64, src);
|
||||
if (ptr) {
|
||||
*dst = ptr - itoa64;
|
||||
return 0;
|
||||
}
|
||||
*dst = 0;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static const uint8_t* decode64_uint32(uint32_t* dst, uint32_t dstbits, const uint8_t* src)
|
||||
{
|
||||
uint32_t bit;
|
||||
uint32_t value;
|
||||
|
||||
value = 0;
|
||||
for (bit = 0; bit < dstbits; bit += 6) {
|
||||
uint32_t one;
|
||||
if (decode64_one(&one, *src)) {
|
||||
*dst = 0;
|
||||
return NULL;
|
||||
}
|
||||
src++;
|
||||
value |= one << bit;
|
||||
}
|
||||
|
||||
*dst = value;
|
||||
return src;
|
||||
}
|
||||
|
||||
uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
|
||||
const uint8_t* passwd, size_t passwdlen, const uint8_t* setting, uint8_t* buf, size_t buflen)
|
||||
{
|
||||
uint8_t hash[HASH_SIZE];
|
||||
const uint8_t * src, * salt;
|
||||
uint8_t * dst;
|
||||
size_t prefixlen, saltlen, need;
|
||||
uint8_t version;
|
||||
uint64_t N;
|
||||
uint32_t r, p;
|
||||
yescrypt_flags_t flags = YESCRYPT_WORM;
|
||||
|
||||
printf("pass1 ...");
|
||||
fflush(stdout);
|
||||
|
||||
if (setting[0] != '$' || setting[1] != '7') {
|
||||
printf("died$7 ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
printf("died80 ...");
|
||||
fflush(stdout);
|
||||
|
||||
src = setting + 2;
|
||||
|
||||
printf("hello '%p'\n", (char *)src);
|
||||
fflush(stdout);
|
||||
|
||||
switch ((version = *src)) {
|
||||
case '$':
|
||||
printf("died2 ...");
|
||||
fflush(stdout);
|
||||
break;
|
||||
case 'X':
|
||||
src++;
|
||||
flags = YESCRYPT_RW;
|
||||
printf("died3 ...");
|
||||
fflush(stdout);
|
||||
break;
|
||||
default:
|
||||
printf("died4 ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
printf("pass2 ...");
|
||||
fflush(stdout);
|
||||
|
||||
if (*src != '$') {
|
||||
uint32_t decoded_flags;
|
||||
if (decode64_one(&decoded_flags, *src)) {
|
||||
printf("died5 ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
flags = decoded_flags;
|
||||
if (*++src != '$') {
|
||||
printf("died6 ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
src++;
|
||||
|
||||
{
|
||||
uint32_t N_log2;
|
||||
if (decode64_one(&N_log2, *src)) {
|
||||
printf("died7 ...");
|
||||
return NULL;
|
||||
}
|
||||
src++;
|
||||
N = (uint64_t)1 << N_log2;
|
||||
}
|
||||
|
||||
src = decode64_uint32(&r, 30, src);
|
||||
if (!src) {
|
||||
printf("died6 ...");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
src = decode64_uint32(&p, 30, src);
|
||||
if (!src) {
|
||||
printf("died7 ...");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
prefixlen = src - setting;
|
||||
|
||||
salt = src;
|
||||
src = (uint8_t *)strrchr((char *)salt, '$');
|
||||
if (src)
|
||||
saltlen = src - salt;
|
||||
else
|
||||
saltlen = strlen((char *)salt);
|
||||
|
||||
need = prefixlen + saltlen + 1 + HASH_LEN + 1;
|
||||
if (need > buflen || need < saltlen) {
|
||||
printf("'%d %d %d'", (int) need, (int) buflen, (int) saltlen);
|
||||
printf("died8killbuf ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen, N, r, p, 0, flags, hash, sizeof(hash))) {
|
||||
printf("died10 ...");
|
||||
fflush(stdout);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
dst = buf;
|
||||
memcpy(dst, setting, prefixlen + saltlen);
|
||||
dst += prefixlen + saltlen;
|
||||
*dst++ = '$';
|
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), hash, sizeof(hash));
|
||||
/* Could zeroize hash[] here, but yescrypt_kdf() doesn't zeroize its
|
||||
* memory allocations yet anyway. */
|
||||
if (!dst || dst >= buf + buflen) { /* Can't happen */
|
||||
printf("died11 ...");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
*dst = 0; /* NUL termination */
|
||||
|
||||
printf("died12 ...");
|
||||
fflush(stdout);
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting)
|
||||
{
|
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1 + HASH_LEN + 1];
|
||||
yescrypt_shared_t shared;
|
||||
yescrypt_local_t local;
|
||||
uint8_t * retval;
|
||||
|
||||
if (yescrypt_init_shared(&shared, NULL, 0,
|
||||
0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0))
|
||||
return NULL;
|
||||
if (yescrypt_init_local(&local)) {
|
||||
yescrypt_free_shared(&shared);
|
||||
return NULL;
|
||||
}
|
||||
retval = yescrypt_r(&shared, &local,
|
||||
passwd, 80, setting, buf, sizeof(buf));
|
||||
//printf("hashse='%s'\n", (char *)retval);
|
||||
if (yescrypt_free_local(&local)) {
|
||||
yescrypt_free_shared(&shared);
|
||||
return NULL;
|
||||
}
|
||||
if (yescrypt_free_shared(&shared))
|
||||
return NULL;
|
||||
return retval;
|
||||
}
|
||||
|
||||
uint8_t* yescrypt_gensalt_r(uint32_t N_log2, uint32_t r, uint32_t p, yescrypt_flags_t flags,
|
||||
const uint8_t* src, size_t srclen, uint8_t* buf, size_t buflen)
|
||||
{
|
||||
uint8_t * dst;
|
||||
size_t prefixlen = 3 + 1 + 5 + 5;
|
||||
size_t saltlen = BYTES2CHARS(srclen);
|
||||
size_t need;
|
||||
|
||||
if (p == 1)
|
||||
flags &= ~YESCRYPT_PARALLEL_SMIX;
|
||||
|
||||
if (flags) {
|
||||
if (flags & ~0x3f)
|
||||
return NULL;
|
||||
|
||||
prefixlen++;
|
||||
if (flags != YESCRYPT_RW)
|
||||
prefixlen++;
|
||||
}
|
||||
|
||||
need = prefixlen + saltlen + 1;
|
||||
if (need > buflen || need < saltlen || saltlen < srclen)
|
||||
return NULL;
|
||||
|
||||
if (N_log2 > 63 || ((uint64_t)r * (uint64_t)p >= (1U << 30)))
|
||||
return NULL;
|
||||
|
||||
dst = buf;
|
||||
*dst++ = '$';
|
||||
*dst++ = '7';
|
||||
if (flags) {
|
||||
*dst++ = 'X'; /* eXperimental, subject to change */
|
||||
if (flags != YESCRYPT_RW)
|
||||
*dst++ = itoa64[flags];
|
||||
}
|
||||
*dst++ = '$';
|
||||
|
||||
*dst++ = itoa64[N_log2];
|
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), r, 30);
|
||||
if (!dst) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), p, 30);
|
||||
if (!dst) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), src, srclen);
|
||||
if (!dst || dst >= buf + buflen) /* Can't happen */
|
||||
return NULL;
|
||||
|
||||
*dst = 0; /* NUL termination */
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
uint8_t* yescrypt_gensalt(uint32_t N_log2, uint32_t r, uint32_t p, yescrypt_flags_t flags,
|
||||
const uint8_t * src, size_t srclen)
|
||||
{
|
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1];
|
||||
return yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen,
|
||||
buf, sizeof(buf));
|
||||
}
|
||||
|
||||
static int yescrypt_bsty(const uint8_t * passwd, size_t passwdlen,
|
||||
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
||||
uint8_t * buf, size_t buflen)
|
||||
{
|
||||
static __thread int initialized = 0;
|
||||
static __thread yescrypt_shared_t shared;
|
||||
static __thread yescrypt_local_t local;
|
||||
int retval;
|
||||
|
||||
if (!initialized) {
|
||||
/* "shared" could in fact be shared, but it's simpler to keep it private
|
||||
* along with "local". It's dummy and tiny anyway. */
|
||||
if (yescrypt_init_shared(&shared, NULL, 0,
|
||||
0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0))
|
||||
return -1;
|
||||
if (yescrypt_init_local(&local)) {
|
||||
yescrypt_free_shared(&shared);
|
||||
return -1;
|
||||
}
|
||||
initialized = 1;
|
||||
}
|
||||
retval = yescrypt_kdf(&shared, &local,
|
||||
passwd, passwdlen, salt, saltlen, N, r, p, 0, YESCRYPT_FLAGS,
|
||||
buf, buflen);
|
||||
#if 0
|
||||
if (yescrypt_free_local(&local)) {
|
||||
yescrypt_free_shared(&shared);
|
||||
return -1;
|
||||
}
|
||||
if (yescrypt_free_shared(&shared))
|
||||
return -1;
|
||||
initialized = 0;
|
||||
#endif
|
||||
return retval;
|
||||
}
|
||||
|
||||
/* main hash 80 bytes input */
|
||||
void yescrypt_hash(const char *input, char *output, uint32_t len)
|
||||
{
|
||||
yescrypt_bsty((uint8_t*)input, len, (uint8_t*)input, len, 2048, 8, 1, (uint8_t*)output, 32);
|
||||
}
|
372
stratum/algos/yescrypt.h
Normal file
372
stratum/algos/yescrypt.h
Normal file
|
@ -0,0 +1,372 @@
|
|||
/*-
|
||||
* Copyright 2009 Colin Percival
|
||||
* Copyright 2013,2014 Alexander Peslyak
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* This file was originally written by Colin Percival as part of the Tarsnap
|
||||
* online backup system.
|
||||
*/
|
||||
|
||||
#ifndef YESCRYPT_H
|
||||
#define YESCRYPT_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h> /* for size_t */
|
||||
|
||||
void yescrypt_hash(const char* input, char* output, uint32_t len);
|
||||
|
||||
/**
|
||||
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
||||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
||||
* must be a power of 2 greater than 1.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* MT-safe as long as buf is local to the thread.
|
||||
*/
|
||||
extern int crypto_scrypt(const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __salt, size_t __saltlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
/**
|
||||
* Internal type used by the memory allocator. Please do not use it directly.
|
||||
* Use yescrypt_shared_t and yescrypt_local_t as appropriate instead, since
|
||||
* they might differ from each other in a future version.
|
||||
*/
|
||||
typedef struct {
|
||||
void * base, * aligned;
|
||||
size_t base_size, aligned_size;
|
||||
} yescrypt_region_t;
|
||||
|
||||
/**
|
||||
* Types for shared (ROM) and thread-local (RAM) data structures.
|
||||
*/
|
||||
typedef yescrypt_region_t yescrypt_shared1_t;
|
||||
typedef struct {
|
||||
yescrypt_shared1_t shared1;
|
||||
uint32_t mask1;
|
||||
} yescrypt_shared_t;
|
||||
typedef yescrypt_region_t yescrypt_local_t;
|
||||
|
||||
/**
|
||||
* Possible values for yescrypt_init_shared()'s flags argument.
|
||||
*/
|
||||
typedef enum {
|
||||
YESCRYPT_SHARED_DEFAULTS = 0,
|
||||
YESCRYPT_SHARED_PREALLOCATED = 0x100
|
||||
} yescrypt_init_shared_flags_t;
|
||||
|
||||
/**
|
||||
* Possible values for the flags argument of yescrypt_kdf(),
|
||||
* yescrypt_gensalt_r(), yescrypt_gensalt(). These may be OR'ed together,
|
||||
* except that YESCRYPT_WORM and YESCRYPT_RW are mutually exclusive.
|
||||
* Please refer to the description of yescrypt_kdf() below for the meaning of
|
||||
* these flags.
|
||||
*/
|
||||
typedef enum {
|
||||
/* public */
|
||||
YESCRYPT_WORM = 0,
|
||||
YESCRYPT_RW = 1,
|
||||
YESCRYPT_PARALLEL_SMIX = 2,
|
||||
YESCRYPT_PWXFORM = 4,
|
||||
/* private */
|
||||
__YESCRYPT_INIT_SHARED_1 = 0x10000,
|
||||
__YESCRYPT_INIT_SHARED_2 = 0x20000,
|
||||
__YESCRYPT_INIT_SHARED = 0x30000
|
||||
} yescrypt_flags_t;
|
||||
|
||||
#define YESCRYPT_KNOWN_FLAGS \
|
||||
(YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | YESCRYPT_PWXFORM | \
|
||||
__YESCRYPT_INIT_SHARED)
|
||||
|
||||
/**
|
||||
* yescrypt_init_shared(shared, param, paramlen, N, r, p, flags, mask,
|
||||
* buf, buflen):
|
||||
* Optionally allocate memory for and initialize the shared (ROM) data
|
||||
* structure. The parameters N, r, and p must satisfy the same conditions as
|
||||
* with crypto_scrypt(). param and paramlen specify a local parameter with
|
||||
* which the ROM is seeded. If buf is not NULL, then it is used to return
|
||||
* buflen bytes of message digest for the initialized ROM (the caller may use
|
||||
* this to verify that the ROM has been computed in the same way that it was on
|
||||
* a previous run).
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* If bit YESCRYPT_SHARED_PREALLOCATED in flags is set, then memory for the
|
||||
* ROM is assumed to have been preallocated by the caller, with
|
||||
* shared->shared1.aligned being the start address of the ROM and
|
||||
* shared->shared1.aligned_size being its size (which must be consistent with
|
||||
* N, r, and p). This may be used e.g. when the ROM is to be placed in a SysV
|
||||
* shared memory segment allocated by the caller.
|
||||
*
|
||||
* mask controls the frequency of ROM accesses by yescrypt_kdf(). Normally it
|
||||
* should be set to 1, to interleave RAM and ROM accesses, which works well
|
||||
* when both regions reside in the machine's RAM anyway. Other values may be
|
||||
* used e.g. when the ROM is memory-mapped from a disk file. Recommended mask
|
||||
* values are powers of 2 minus 1 or minus 2. Here's the effect of some mask
|
||||
* values:
|
||||
* mask value ROM accesses in SMix 1st loop ROM accesses in SMix 2nd loop
|
||||
* 0 0 1/2
|
||||
* 1 1/2 1/2
|
||||
* 2 0 1/4
|
||||
* 3 1/4 1/4
|
||||
* 6 0 1/8
|
||||
* 7 1/8 1/8
|
||||
* 14 0 1/16
|
||||
* 15 1/16 1/16
|
||||
* 1022 0 1/1024
|
||||
* 1023 1/1024 1/1024
|
||||
*
|
||||
* Actual computation of the ROM contents may be avoided, if you don't intend
|
||||
* to use a ROM but need a dummy shared structure, by calling this function
|
||||
* with NULL, 0, 0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0 for the
|
||||
* arguments starting with param and on.
|
||||
*
|
||||
* MT-safe as long as shared is local to the thread.
|
||||
*/
|
||||
extern int yescrypt_init_shared(yescrypt_shared_t * __shared,
|
||||
const uint8_t * __param, size_t __paramlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p,
|
||||
yescrypt_init_shared_flags_t __flags, uint32_t __mask,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
/**
|
||||
* yescrypt_free_shared(shared):
|
||||
* Free memory that had been allocated with yescrypt_init_shared().
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* MT-safe as long as shared is local to the thread.
|
||||
*/
|
||||
extern int yescrypt_free_shared(yescrypt_shared_t * __shared);
|
||||
|
||||
/**
|
||||
* yescrypt_init_local(local):
|
||||
* Initialize the thread-local (RAM) data structure. Actual memory allocation
|
||||
* is currently fully postponed until a call to yescrypt_kdf() or yescrypt_r().
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* MT-safe as long as local is local to the thread.
|
||||
*/
|
||||
extern int yescrypt_init_local(yescrypt_local_t * __local);
|
||||
|
||||
/**
|
||||
* yescrypt_free_local(local):
|
||||
* Free memory that may have been allocated for an initialized thread-local
|
||||
* (RAM) data structure.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* MT-safe as long as local is local to the thread.
|
||||
*/
|
||||
extern int yescrypt_free_local(yescrypt_local_t * __local);
|
||||
|
||||
/**
|
||||
* yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen,
|
||||
* N, r, p, t, flags, buf, buflen):
|
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
||||
* p, buflen), or a revision of scrypt as requested by flags and shared, and
|
||||
* write the result into buf. The parameters N, r, p, and buflen must satisfy
|
||||
* the same conditions as with crypto_scrypt(). t controls computation time
|
||||
* while not affecting peak memory usage. shared and flags may request
|
||||
* special modes as described below. local is the thread-local data
|
||||
* structure, allowing to preserve and reuse a memory allocation across calls,
|
||||
* thereby reducing its overhead.
|
||||
*
|
||||
* Return 0 on success; or -1 on error.
|
||||
*
|
||||
* t controls computation time. t = 0 is optimal in terms of achieving the
|
||||
* highest area-time for ASIC attackers. Thus, higher computation time, if
|
||||
* affordable, is best achieved by increasing N rather than by increasing t.
|
||||
* However, if the higher memory usage (which goes along with higher N) is not
|
||||
* affordable, or if fine-tuning of the time is needed (recall that N must be a
|
||||
* power of 2), then t = 1 or above may be used to increase time while staying
|
||||
* at the same peak memory usage. t = 1 increases the time by 25% and
|
||||
* decreases the normalized area-time to 96% of optimal. (Of course, in
|
||||
* absolute terms the area-time increases with higher t. It's just that it
|
||||
* would increase slightly more with higher N*r rather than with higher t.)
|
||||
* t = 2 increases the time by another 20% and decreases the normalized
|
||||
* area-time to 89% of optimal. Thus, these two values are reasonable to use
|
||||
* for fine-tuning. Values of t higher than 2 result in further increase in
|
||||
* time while reducing the efficiency much further (e.g., down to around 50% of
|
||||
* optimal for t = 5, which runs 3 to 4 times slower than t = 0, with exact
|
||||
* numbers varying by the flags settings).
|
||||
*
|
||||
* Classic scrypt is available by setting t = 0 and flags to YESCRYPT_WORM and
|
||||
* passing a dummy shared structure (see the description of
|
||||
* yescrypt_init_shared() above for how to produce one). In this mode, the
|
||||
* thread-local memory region (RAM) is first sequentially written to and then
|
||||
* randomly read from. This algorithm is friendly towards time-memory
|
||||
* tradeoffs (TMTO), available both to defenders (albeit not in this
|
||||
* implementation) and to attackers.
|
||||
*
|
||||
* Setting YESCRYPT_RW adds extra random reads and writes to the thread-local
|
||||
* memory region (RAM), which makes TMTO a lot less efficient. This may be
|
||||
* used to slow down the kinds of attackers who would otherwise benefit from
|
||||
* classic scrypt's efficient TMTO. Since classic scrypt's TMTO allows not
|
||||
* only for the tradeoff, but also for a decrease of attacker's area-time (by
|
||||
* up to a constant factor), setting YESCRYPT_RW substantially increases the
|
||||
* cost of attacks in area-time terms as well. Yet another benefit of it is
|
||||
* that optimal area-time is reached at an earlier time than with classic
|
||||
* scrypt, and t = 0 actually corresponds to this earlier completion time,
|
||||
* resulting in quicker hash computations (and thus in higher request rate
|
||||
* capacity). Due to these properties, YESCRYPT_RW should almost always be
|
||||
* set, except when compatibility with classic scrypt or TMTO-friendliness are
|
||||
* desired.
|
||||
*
|
||||
* YESCRYPT_PARALLEL_SMIX moves parallelism that is present with p > 1 to a
|
||||
* lower level as compared to where it is in classic scrypt. This reduces
|
||||
* flexibility for efficient computation (for both attackers and defenders) by
|
||||
* requiring that, short of resorting to TMTO, the full amount of memory be
|
||||
* allocated as needed for the specified p, regardless of whether that
|
||||
* parallelism is actually being fully made use of or not. (For comparison, a
|
||||
* single instance of classic scrypt may be computed in less memory without any
|
||||
* CPU time overhead, but in more real time, by not making full use of the
|
||||
* parallelism.) This may be desirable when the defender has enough memory
|
||||
* with sufficiently low latency and high bandwidth for efficient full parallel
|
||||
* execution, yet the required memory size is high enough that some likely
|
||||
* attackers might end up being forced to choose between using higher latency
|
||||
* memory than they could use otherwise (waiting for data longer) or using TMTO
|
||||
* (waiting for data more times per one hash computation). The area-time cost
|
||||
* for other kinds of attackers (who would use the same memory type and TMTO
|
||||
* factor or no TMTO either way) remains roughly the same, given the same
|
||||
* running time for the defender. In the TMTO-friendly YESCRYPT_WORM mode, as
|
||||
* long as the defender has enough memory that is just as fast as the smaller
|
||||
* per-thread regions would be, doesn't expect to ever need greater
|
||||
* flexibility (except possibly via TMTO), and doesn't need backwards
|
||||
* compatibility with classic scrypt, there are no other serious drawbacks to
|
||||
* this setting. In the YESCRYPT_RW mode, which is meant to discourage TMTO,
|
||||
* this new approach to parallelization makes TMTO less inefficient. (This is
|
||||
* an unfortunate side-effect of avoiding some random writes, as we have to in
|
||||
* order to allow for parallel threads to access a common memory region without
|
||||
* synchronization overhead.) Thus, in this mode this setting poses an extra
|
||||
* tradeoff of its own (higher area-time cost for a subset of attackers vs.
|
||||
* better TMTO resistance). Setting YESCRYPT_PARALLEL_SMIX also changes the
|
||||
* way the running time is to be controlled from N*r*p (for classic scrypt) to
|
||||
* N*r (in this modification). All of this applies only when p > 1. For
|
||||
* p = 1, this setting is a no-op.
|
||||
*
|
||||
* Passing a real shared structure, with ROM contents previously computed by
|
||||
* yescrypt_init_shared(), enables the use of ROM and requires YESCRYPT_RW for
|
||||
* the thread-local RAM region. In order to allow for initialization of the
|
||||
* ROM to be split into a separate program, the shared->shared1.aligned and
|
||||
* shared->shared1.aligned_size fields may be set by the caller of
|
||||
* yescrypt_kdf() manually rather than with yescrypt_init_shared().
|
||||
*
|
||||
* local must be initialized with yescrypt_init_local().
|
||||
*
|
||||
* MT-safe as long as local and buf are local to the thread.
|
||||
*/
|
||||
extern int yescrypt_kdf(const yescrypt_shared_t * __shared,
|
||||
yescrypt_local_t * __local,
|
||||
const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __salt, size_t __saltlen,
|
||||
uint64_t __N, uint32_t __r, uint32_t __p, uint32_t __t,
|
||||
yescrypt_flags_t __flags,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
/**
|
||||
* yescrypt_r(shared, local, passwd, passwdlen, setting, buf, buflen):
|
||||
* Compute and encode an scrypt or enhanced scrypt hash of passwd given the
|
||||
* parameters and salt value encoded in setting. If the shared structure is
|
||||
* not dummy, a ROM is used and YESCRYPT_RW is required. Otherwise, whether to
|
||||
* use the YESCRYPT_WORM (classic scrypt) or YESCRYPT_RW (time-memory tradeoff
|
||||
* discouraging modification) is determined by the setting string. shared and
|
||||
* local must be initialized as described above for yescrypt_kdf(). buf must
|
||||
* be large enough (as indicated by buflen) to hold the encoded hash string.
|
||||
*
|
||||
* Return the encoded hash string on success; or NULL on error.
|
||||
*
|
||||
* MT-safe as long as local and buf are local to the thread.
|
||||
*/
|
||||
extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared,
|
||||
yescrypt_local_t * __local,
|
||||
const uint8_t * __passwd, size_t __passwdlen,
|
||||
const uint8_t * __setting,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
/**
|
||||
* yescrypt(passwd, setting):
|
||||
* Compute and encode an scrypt or enhanced scrypt hash of passwd given the
|
||||
* parameters and salt value encoded in setting. Whether to use the
|
||||
* YESCRYPT_WORM (classic scrypt) or YESCRYPT_RW (time-memory tradeoff
|
||||
* discouraging modification) is determined by the setting string.
|
||||
*
|
||||
* Return the encoded hash string on success; or NULL on error.
|
||||
*
|
||||
* This is a crypt(3)-like interface, which is simpler to use than
|
||||
* yescrypt_r(), but it is not MT-safe, it does not allow for the use of a ROM,
|
||||
* and it is slower than yescrypt_r() for repeated calls because it allocates
|
||||
* and frees memory on each call.
|
||||
*
|
||||
* MT-unsafe.
|
||||
*/
|
||||
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting);
|
||||
|
||||
/**
|
||||
* yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen, buf, buflen):
|
||||
* Generate a setting string for use with yescrypt_r() and yescrypt() by
|
||||
* encoding into it the parameters N_log2 (which is to be set to base 2
|
||||
* logarithm of the desired value for N), r, p, flags, and a salt given by src
|
||||
* (of srclen bytes). buf must be large enough (as indicated by buflen) to
|
||||
* hold the setting string.
|
||||
*
|
||||
* Return the setting string on success; or NULL on error.
|
||||
*
|
||||
* MT-safe as long as buf is local to the thread.
|
||||
*/
|
||||
extern uint8_t * yescrypt_gensalt_r(
|
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p,
|
||||
yescrypt_flags_t __flags,
|
||||
const uint8_t * __src, size_t __srclen,
|
||||
uint8_t * __buf, size_t __buflen);
|
||||
|
||||
/**
|
||||
* yescrypt_gensalt(N_log2, r, p, flags, src, srclen):
|
||||
* Generate a setting string for use with yescrypt_r() and yescrypt(). This
|
||||
* function is the same as yescrypt_gensalt_r() except that it uses a static
|
||||
* buffer and thus is not MT-safe.
|
||||
*
|
||||
* Return the setting string on success; or NULL on error.
|
||||
*
|
||||
* MT-unsafe.
|
||||
*/
|
||||
extern uint8_t * yescrypt_gensalt(
|
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p,
|
||||
yescrypt_flags_t __flags,
|
||||
const uint8_t * __src, size_t __srclen);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
16
stratum/config.sample/yescrypt.conf
Normal file
16
stratum/config.sample/yescrypt.conf
Normal file
|
@ -0,0 +1,16 @@
|
|||
[TCP]
|
||||
server = yaamp.com
|
||||
port = 6233
|
||||
password = tu8tu5
|
||||
|
||||
[SQL]
|
||||
host = yaampdb
|
||||
database = yaamp
|
||||
username = root
|
||||
password = patofpaq
|
||||
|
||||
[STRATUM]
|
||||
algo = yescrypt
|
||||
difficulty = 2
|
||||
max_ttf = 400000000
|
||||
|
|
@ -112,6 +112,7 @@ YAAMP_ALGO g_algos[] =
|
|||
{"luffa", luffa_hash, 1, 0, 0},
|
||||
{"penta", penta_hash, 1, 0, 0},
|
||||
{"skein2", skein2_hash, 1, 0, 0},
|
||||
{"yescrypt", yescrypt_hash, 0x10000, 0, 0},
|
||||
{"zr5", zr5_hash, 1, 0, 0},
|
||||
|
||||
{"hive", hive_hash, 0x10000, 0, 0},
|
||||
|
|
|
@ -148,6 +148,7 @@ void sha256_double_hash_hex(const char *input, char *output, unsigned int len);
|
|||
#include "algos/whirlpool.h"
|
||||
#include "algos/whirlpoolx.h"
|
||||
#include "algos/skein2.h"
|
||||
#include "algos/yescrypt.h"
|
||||
#include "algos/zr5.h"
|
||||
#include "algos/hive.h"
|
||||
#include "algos/sib.h"
|
||||
|
|
|
@ -28,6 +28,7 @@ function yaamp_get_algos()
|
|||
'sib',
|
||||
'skein',
|
||||
'skein2',
|
||||
'yescrypt',
|
||||
'zr5',
|
||||
);
|
||||
}
|
||||
|
@ -94,6 +95,7 @@ function getAlgoColors($algo)
|
|||
'sib' => '#a0a0c0',
|
||||
'skein' => '#80a0a0',
|
||||
'skein2' => '#a0a0a0',
|
||||
'yescrypt' => '#c0e0e0',
|
||||
'zr5' => '#d0b0d0',
|
||||
|
||||
'MN' => '#ffffff', // MasterNode Earnings
|
||||
|
@ -140,6 +142,7 @@ function getAlgoPort($algo)
|
|||
'penta' => 5833,
|
||||
'luffa' => 5933,
|
||||
'm7m' => 6033,
|
||||
'yescrypt' => 6233,
|
||||
);
|
||||
|
||||
global $configCustomPorts;
|
||||
|
|
Loading…
Add table
Reference in a new issue