lbcwallet/rescan.go
Josh Rickmar 59845d9c21 Implement a batching rescan manager.
Recent btcd versions only allow one rescan to run at any given time
per websocket client.  To better handle this, a new set of goroutines
are started by the account manager which batch and serialize rescan
jobs.

If no rescans are currently running, a new rescan starts.  If a rescan
is already being processed, the request is queued and runs after the
current rescan finishes.  For any additional incoming requests before
the current rescan finishes, the requests are merged with the
currently-waiting request so both can be handled with a single rescan.

This change also prepares for rescan progress notifications from btcd,
but are still unhandled until the necessary details for
partially-synced addresses are added to the wallet file format.
2014-03-26 17:27:30 -05:00

266 lines
7.5 KiB
Go

/*
* Copyright (c) 2013, 2014 Conformal Systems LLC <info@conformal.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package main
import (
"github.com/conformal/btcjson"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
)
// RescanMsg is the interface type for messages sent to the
// RescanManager's message channel.
type RescanMsg interface {
ImplementsRescanMsg()
}
// RescanStartedMsg reports the job being processed for a new
// rescan.
type RescanStartedMsg RescanJob
// ImplementsRescanMsg is implemented to satisify the RescanMsg
// interface.
func (r *RescanStartedMsg) ImplementsRescanMsg() {}
// RescanProgressMsg reports the current progress made by a rescan
// for a set of account's addresses.
type RescanProgressMsg struct {
Addresses map[*Account][]btcutil.Address
Height int32
}
// ImplementsRescanMsg is implemented to satisify the RescanMsg
// interface.
func (r *RescanProgressMsg) ImplementsRescanMsg() {}
// RescanFinishedMsg reports the set of account's addresses of a
// possibly-finished rescan, or an error if the rescan failed.
type RescanFinishedMsg struct {
Addresses map[*Account][]btcutil.Address
Error *btcjson.Error
}
// ImplementsRescanMsg is implemented to satisify the RescanMsg
// interface.
func (r *RescanFinishedMsg) ImplementsRescanMsg() {}
// RescanManager manages a set of current and to be processed account's
// addresses, batching waiting jobs together to minimize the total time
// needed to rescan many separate jobs. Rescan requests are processed
// one at a time, and the next batch does not run until the current
// has finished.
type RescanManager struct {
addJob chan *RescanJob
sendJob chan *RescanJob
status chan interface{} // rescanProgress and rescanFinished
msgs chan RescanMsg
jobCompleteChan chan chan struct{}
}
// NewRescanManager creates a new RescanManger. If msgChan is non-nil,
// rescan messages are sent to the channel for additional processing by
// the caller.
func NewRescanManager(msgChan chan RescanMsg) *RescanManager {
return &RescanManager{
addJob: make(chan *RescanJob, 1),
sendJob: make(chan *RescanJob, 1),
status: make(chan interface{}, 1),
msgs: msgChan,
jobCompleteChan: make(chan chan struct{}, 1),
}
}
// Start starts the goroutines to run the RescanManager.
func (m *RescanManager) Start() {
go m.jobHandler()
go m.rpcHandler()
}
type rescanBatch struct {
addrs map[*Account][]btcutil.Address
outpoints map[btcwire.OutPoint]struct{}
height int32
complete chan struct{}
}
func newRescanBatch() *rescanBatch {
return &rescanBatch{
addrs: map[*Account][]btcutil.Address{},
outpoints: map[btcwire.OutPoint]struct{}{},
height: -1,
complete: make(chan struct{}),
}
}
func (b *rescanBatch) done() {
close(b.complete)
}
func (b *rescanBatch) empty() bool {
return len(b.addrs) == 0
}
func (b *rescanBatch) job() *RescanJob {
// Create slice of outpoint points from the batch's set.
outpoints := make([]*btcwire.OutPoint, 0, len(b.outpoints))
for outpoint := range b.outpoints {
opCopy := outpoint
outpoints = append(outpoints, &opCopy)
}
return &RescanJob{
Addresses: b.addrs,
OutPoints: outpoints,
StartHeight: b.height,
}
}
func (b *rescanBatch) merge(job *RescanJob) {
for acct, addr := range job.Addresses {
b.addrs[acct] = append(b.addrs[acct], addr...)
}
for _, op := range job.OutPoints {
b.outpoints[*op] = struct{}{}
}
if b.height == -1 || job.StartHeight < b.height {
b.height = job.StartHeight
}
}
// Status types for the handler.
type rescanProgress int32
type rescanFinished *btcjson.Error
// jobHandler runs the RescanManager's for-select loop to manage rescan jobs
// and dispatch requests.
func (m *RescanManager) jobHandler() {
curBatch := newRescanBatch()
nextBatch := newRescanBatch()
for {
select {
case job := <-m.addJob:
if curBatch.empty() {
// Set current batch as this job and send
// request.
curBatch.merge(job)
m.sendJob <- job
// Send the channel that is closed when the
// current batch completes.
m.jobCompleteChan <- curBatch.complete
// Notify listener of a newly-started rescan.
if m.msgs != nil {
m.msgs <- (*RescanStartedMsg)(job)
}
} else {
// Add job to waiting batch.
nextBatch.merge(job)
// Send the channel that is closed when the
// waiting batch completes.
m.jobCompleteChan <- nextBatch.complete
}
case status := <-m.status:
switch s := status.(type) {
case rescanProgress:
if m.msgs != nil {
m.msgs <- &RescanProgressMsg{
Addresses: curBatch.addrs,
Height: int32(s),
}
}
case rescanFinished:
if m.msgs != nil {
m.msgs <- &RescanFinishedMsg{
Addresses: curBatch.addrs,
Error: (*btcjson.Error)(s),
}
}
curBatch.done()
curBatch, nextBatch = nextBatch, newRescanBatch()
if !curBatch.empty() {
job := curBatch.job()
m.sendJob <- curBatch.job()
if m.msgs != nil {
m.msgs <- (*RescanStartedMsg)(job)
}
}
}
}
}
}
// rpcHandler reads jobs sent by the jobHandler and sends the rpc requests
// to perform the rescan. New jobs are not read until a rescan finishes.
// The jobHandler is notified when the processing the rescan finishes.
func (m *RescanManager) rpcHandler() {
for job := range m.sendJob {
var addrStrs []string
for _, addrs := range job.Addresses {
for i := range addrs {
addrStrs = append(addrStrs, addrs[i].EncodeAddress())
}
}
c := CurrentServerConn()
jsonErr := Rescan(c, job.StartHeight, addrStrs, job.OutPoints)
m.status <- rescanFinished(jsonErr)
}
}
// RescanJob is a job to be processed by the RescanManager. The job includes
// a set of account's addresses, a starting height to begin the rescan, and
// outpoints spendable by the addresses thought to be unspent.
type RescanJob struct {
Addresses map[*Account][]btcutil.Address
OutPoints []*btcwire.OutPoint
StartHeight int32
}
// Merge merges the work from k into j, setting the starting height to
// the minimum of the two jobs. This method does not check for
// duplicate addresses or outpoints.
func (j *RescanJob) Merge(k *RescanJob) {
for acct, addrs := range k.Addresses {
j.Addresses[acct] = append(j.Addresses[acct], addrs...)
}
for _, op := range k.OutPoints {
j.OutPoints = append(j.OutPoints, op)
}
if k.StartHeight < j.StartHeight {
j.StartHeight = k.StartHeight
}
}
// SubmitJob submits a RescanJob to the RescanManager. A channel is returned
// that is closed once the rescan request for the job completes.
func (m *RescanManager) SubmitJob(job *RescanJob) <-chan struct{} {
m.addJob <- job
return <-m.jobCompleteChan
}
// MarkProgress messages the RescanManager with the height of the block
// last processed by a running rescan.
func (m *RescanManager) MarkProgress(height int32) {
m.status <- rescanProgress(height)
}