lbcd/signature.go
Owain G. Ainsworth ba51aa8934 partially revert afc2e8100a
Turns out that there are some signatures in the bitcoin blockchain that have
trailing 0s, for example
12a1b29fd6c295075b6a66f5fd90f0126ceb1fda4f15e4b44d92518bd52a5cdf has a signature
length of 0x45 where there are 0x47 bytes following that length check (one is
hashtype and is supposed to be trimmed out prior to calling the function). We
relax the paranoid length check to permit traling data, but not to permit
buffers that are too short. Change the test to passing with a big comment
stating why this is now considered a valid case.
2013-06-24 18:15:25 +01:00

113 lines
3.3 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/elliptic"
"errors"
"fmt"
"math/big"
)
type Signature struct {
R *big.Int
S *big.Int
}
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
// Originally this code used encoding/asn1 in order to parse the
// signature, but a number of problems were found with this approach.
// Despite the fact that signatures are stored as DER, the difference
// between go's idea of a bignum (and that they have sign) doesn't agree
// with the openssl one (where they do not). The above is true as of
// Go 1.1. In the end it was simpler to rewrite the code to explicitly
// understand the format which is this:
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
// <length of S> <S>.
signature := &Signature{}
// minimal message is when both numbers are 1 bytes. adding up to:
// 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
if len(sigStr) < 8 {
return nil, errors.New("malformed signature: too short")
}
// 0x30
index := 0
if sigStr[index] != 0x30 {
return nil, errors.New("malformed signature: no header magic")
}
index++
// length of remaining message
siglen := sigStr[index]
index++
if int(siglen+2) > len(sigStr) {
return nil, errors.New("malformed signature: bad length")
}
// trim the slice we're working on so we only look at what matters.
sigStr = sigStr[:siglen+2]
// 0x02
if sigStr[index] != 0x02 {
return nil,
errors.New("malformed signature: no 1st int marker")
}
index++
// Length of signature R.
rLen := int(sigStr[index])
// must be positive, must be able to fit in another 0x2, <len> <s>
// hence the -3. We assume that the length must be at least one byte.
index++
if rLen <= 0 || rLen > len(sigStr)-index-3 {
return nil, errors.New("malformed signature: bogus R length")
}
// Then R itself.
signature.R = new(big.Int).SetBytes(sigStr[index : index+rLen])
index += rLen
// 0x02. length already checked in previous if.
if sigStr[index] != 0x02 {
return nil, errors.New("malformed signature: no 2nd int marker")
}
index++
// Length of signature S.
sLen := int(sigStr[index])
index++
// S should be the rest of the string.
if sLen <= 0 || sLen > len(sigStr)-index {
return nil, errors.New("malformed signature: bogus S length")
}
// Then S itself.
signature.S = new(big.Int).SetBytes(sigStr[index : index+sLen])
index += sLen
// sanity check length parsing
if index != len(sigStr) {
return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
index, len(sigStr))
}
// Verify also checks this, but we can be more sure that we parsed
// correctly if we verify here too.
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
if signature.R.Sign() != 1 {
return nil, errors.New("Signature R isn't 1 or more")
}
if signature.S.Sign() != 1 {
return nil, errors.New("Signature S isn't 1 or more")
}
if signature.R.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("Signature R is >= curve.N")
}
if signature.S.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("Signature S is >= curve.N")
}
return signature, nil
}