LBRY-Vault/lib/bitcoin.py
K 41127db32d Let wallet recovery use 64 byte hex strings and 24 word seeds.
1. Allow wallet recovery from 64 byte hex strings.
2. Allow use of 24 word legacy seeds created from 64 byte hex strings.
2015-03-19 08:20:32 -07:00

788 lines
24 KiB
Python

# -*- coding: utf-8 -*-
#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import hashlib
import base64
import re
import sys
import hmac
import version
from util import print_error, InvalidPassword
import ecdsa
import aes
################################## transactions
DUST_THRESHOLD = 5430
MIN_RELAY_TX_FEE = 1000
RECOMMENDED_FEE = 50000
COINBASE_MATURITY = 100
# AES encryption
EncodeAES = lambda secret, s: base64.b64encode(aes.encryptData(secret,s))
DecodeAES = lambda secret, e: aes.decryptData(secret, base64.b64decode(e))
def strip_PKCS7_padding(s):
"""return s stripped of PKCS7 padding"""
if len(s)%16 or not s:
raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
numpads = ord(s[-1])
if numpads > 16:
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
if s[-numpads:] != numpads*chr(numpads):
raise ValueError("Invalid PKCS7 padding")
return s[:-numpads]
# backport padding fix to AES module
aes.strip_PKCS7_padding = strip_PKCS7_padding
def aes_encrypt_with_iv(key, iv, data):
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
key = map(ord, key)
iv = map(ord, iv)
data = aes.append_PKCS7_padding(data)
keysize = len(key)
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
moo = aes.AESModeOfOperation()
(mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
return ''.join(map(chr, ciph))
def aes_decrypt_with_iv(key, iv, data):
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
key = map(ord, key)
iv = map(ord, iv)
keysize = len(key)
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
data = map(ord, data)
moo = aes.AESModeOfOperation()
decr = moo.decrypt(data, None, mode, key, keysize, iv)
decr = strip_PKCS7_padding(decr)
return decr
def pw_encode(s, password):
if password:
secret = Hash(password)
return EncodeAES(secret, s.encode("utf8"))
else:
return s
def pw_decode(s, password):
if password is not None:
secret = Hash(password)
try:
d = DecodeAES(secret, s).decode("utf8")
except Exception:
raise InvalidPassword()
return d
else:
return s
def rev_hex(s):
return s.decode('hex')[::-1].encode('hex')
def int_to_hex(i, length=1):
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def var_int(i):
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
return int_to_hex(i)
elif i<=0xffff:
return "fd"+int_to_hex(i,2)
elif i<=0xffffffff:
return "fe"+int_to_hex(i,4)
else:
return "ff"+int_to_hex(i,8)
def op_push(i):
if i<0x4c:
return int_to_hex(i)
elif i<0xff:
return '4c' + int_to_hex(i)
elif i<0xffff:
return '4d' + int_to_hex(i,2)
else:
return '4e' + int_to_hex(i,4)
def sha256(x):
return hashlib.sha256(x).digest()
def Hash(x):
if type(x) is unicode: x=x.encode('utf-8')
return sha256(sha256(x))
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
def is_new_seed(x, prefix=version.SEED_PREFIX):
import mnemonic
x = mnemonic.prepare_seed(x)
s = hmac_sha_512("Seed version", x.encode('utf8')).encode('hex')
return s.startswith(prefix)
def is_old_seed(seed):
import old_mnemonic
words = seed.strip().split()
try:
old_mnemonic.mn_decode(words)
uses_electrum_words = True
except Exception:
uses_electrum_words = False
try:
seed.decode('hex')
is_hex = (len(seed) == 32 or len(seed) == 64)
except Exception:
is_hex = False
return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24))
# pywallet openssl private key implementation
def i2d_ECPrivateKey(pkey, compressed=False):
if compressed:
key = '3081d30201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107042102' + \
'%064x' % _Gx + \
'022100' + \
'%064x' % _r + \
'020101a124032200'
else:
key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
def i2o_ECPublicKey(pubkey, compressed=False):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
if compressed:
if pubkey.point.y() & 1:
key = '03' + '%064x' % pubkey.point.x()
else:
key = '02' + '%064x' % pubkey.point.x()
else:
key = '04' + \
'%064x' % pubkey.point.x() + \
'%064x' % pubkey.point.y()
return key.decode('hex')
# end pywallet openssl private key implementation
############ functions from pywallet #####################
def hash_160(public_key):
try:
md = hashlib.new('ripemd160')
md.update(sha256(public_key))
return md.digest()
except Exception:
import ripemd
md = ripemd.new(sha256(public_key))
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160, addrtype = 0):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return base_encode(addr, base=58)
def bc_address_to_hash_160(addr):
bytes = base_decode(addr, 25, base=58)
return ord(bytes[0]), bytes[1:21]
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
assert len(__b58chars) == 58
__b43chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:'
assert len(__b43chars) == 43
def base_encode(v, base):
""" encode v, which is a string of bytes, to base58."""
if base == 58:
chars = __b58chars
elif base == 43:
chars = __b43chars
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= base:
div, mod = divmod(long_value, base)
result = chars[mod] + result
long_value = div
result = chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (chars[0]*nPad) + result
def base_decode(v, length, base):
""" decode v into a string of len bytes."""
if base == 58:
chars = __b58chars
elif base == 43:
chars = __b43chars
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += chars.find(c) * (base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return base_encode(vchIn + hash[0:4], base=58)
def DecodeBase58Check(psz):
vchRet = base_decode(psz, None, base=58)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret, compressed=False, addrtype=0):
vchIn = chr((addrtype+128)&255) + secret
if compressed: vchIn += '\01'
return EncodeBase58Check(vchIn)
def ASecretToSecret(key, addrtype=0):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr((addrtype+128)&255):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
b = b[0:32]
return EC_KEY(b)
def GetPubKey(pubkey, compressed=False):
return i2o_ECPublicKey(pubkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def is_compressed(sec):
b = ASecretToSecret(sec)
return len(b) == 33
def public_key_from_private_key(sec):
# rebuild public key from private key, compressed or uncompressed
pkey = regenerate_key(sec)
assert pkey
compressed = is_compressed(sec)
public_key = GetPubKey(pkey.pubkey, compressed)
return public_key.encode('hex')
def address_from_private_key(sec):
public_key = public_key_from_private_key(sec)
address = public_key_to_bc_address(public_key.decode('hex'))
return address
def is_valid(addr):
return is_address(addr)
def is_address(addr):
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
if not ADDRESS_RE.match(addr): return False
try:
addrtype, h = bc_address_to_hash_160(addr)
except Exception:
return False
return addr == hash_160_to_bc_address(h, addrtype)
def is_private_key(key):
try:
k = ASecretToSecret(key)
return k is not False
except:
return False
########### end pywallet functions #######################
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
from ecdsa.curves import SECP256k1
from ecdsa.ellipticcurve import Point
from ecdsa.util import string_to_number, number_to_string
def msg_magic(message):
varint = var_int(len(message))
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
def verify_message(address, signature, message):
try:
EC_KEY.verify_message(address, signature, message)
return True
except Exception as e:
print_error("Verification error: {0}".format(e))
return False
def encrypt_message(message, pubkey):
return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
def chunks(l, n):
return [l[i:i+n] for i in xrange(0, len(l), n)]
def ECC_YfromX(x,curved=curve_secp256k1, odd=True):
_p = curved.p()
_a = curved.a()
_b = curved.b()
for offset in range(128):
Mx = x + offset
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
My = pow(My2, (_p+1)/4, _p )
if curved.contains_point(Mx,My):
if odd == bool(My&1):
return [My,offset]
return [_p-My,offset]
raise Exception('ECC_YfromX: No Y found')
def negative_point(P):
return Point( P.curve(), P.x(), -P.y(), P.order() )
def point_to_ser(P, comp=True ):
if comp:
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex')
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
def ser_to_point(Aser):
curve = curve_secp256k1
generator = generator_secp256k1
_r = generator.order()
assert Aser[0] in ['\x02','\x03','\x04']
if Aser[0] == '\x04':
return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r )
Mx = string_to_number(Aser[1:])
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r )
class MyVerifyingKey(ecdsa.VerifyingKey):
@classmethod
def from_signature(klass, sig, recid, h, curve):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
from ecdsa import util, numbertheory
import msqr
curveFp = curve.curve
G = curve.generator
order = G.order()
# extract r,s from signature
r, s = util.sigdecode_string(sig, order)
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
beta = msqr.modular_sqrt(alpha, curveFp.p())
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = Point(curveFp, x, y, order)
# 1.5 compute e from message:
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
return klass.from_public_point( Q, curve )
class EC_KEY(object):
def __init__( self, k ):
secret = string_to_number(k)
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
self.secret = secret
def get_public_key(self, compressed=True):
return point_to_ser(self.pubkey.point, compressed).encode('hex')
def sign_message(self, message, compressed, address):
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except Exception:
continue
else:
raise Exception("error: cannot sign message")
@classmethod
def verify_message(self, address, signature, message):
sig = base64.b64decode(signature)
if len(sig) != 65: raise Exception("Wrong encoding")
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise Exception("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
h = Hash( msg_magic(message) )
public_key = MyVerifyingKey.from_signature( sig[1:], recid, h, curve = SECP256k1 )
# check public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( point_to_ser(public_key.pubkey.point, compressed) )
if address != addr:
raise Exception("Bad signature")
# ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
@classmethod
def encrypt_message(self, message, pubkey):
pk = ser_to_point(pubkey)
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
raise Exception('invalid pubkey')
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order())
ephemeral = EC_KEY(ephemeral_exponent)
ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
encrypted = 'BIE1' + ephemeral_pubkey + ciphertext
mac = hmac.new(key_m, encrypted, hashlib.sha256).digest()
return base64.b64encode(encrypted + mac)
def decrypt_message(self, encrypted):
encrypted = base64.b64decode(encrypted)
if len(encrypted) < 85:
raise Exception('invalid ciphertext: length')
magic = encrypted[:4]
ephemeral_pubkey = encrypted[4:37]
ciphertext = encrypted[37:-32]
mac = encrypted[-32:]
if magic != 'BIE1':
raise Exception('invalid ciphertext: invalid magic bytes')
try:
ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
except AssertionError, e:
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()):
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest():
raise Exception('invalid ciphertext: invalid mac')
return aes_decrypt_with_iv(key_e, iv, ciphertext)
###################################### BIP32 ##############################
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
BIP32_PRIME = 0x80000000
def get_pubkeys_from_secret(secret):
# public key
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
K = public_key.to_string()
K_compressed = GetPubKey(public_key.pubkey,True)
return K, K_compressed
# Child private key derivation function (from master private key)
# k = master private key (32 bytes)
# c = master chain code (extra entropy for key derivation) (32 bytes)
# n = the index of the key we want to derive. (only 32 bits will be used)
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
# corresponding public key can NOT be determined without the master private key.
# However, if n is positive, the resulting private key's corresponding
# public key can be determined without the master private key.
def CKD_priv(k, c, n):
is_prime = n & BIP32_PRIME
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime)
def _CKD_priv(k, c, s, is_prime):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
keypair = EC_KEY(k)
cK = GetPubKey(keypair.pubkey,True)
data = chr(0) + k + s if is_prime else cK + s
I = hmac.new(c, data, hashlib.sha512).digest()
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
c_n = I[32:]
return k_n, c_n
# Child public key derivation function (from public key only)
# K = master public key
# c = master chain code
# n = index of key we want to derive
# This function allows us to find the nth public key, as long as n is
# non-negative. If n is negative, we need the master private key to find it.
def CKD_pub(cK, c, n):
if n & BIP32_PRIME: raise
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex'))
# helper function, callable with arbitrary string
def _CKD_pub(cK, c, s):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
I = hmac.new(c, cK + s, hashlib.sha512).digest()
curve = SECP256k1
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK)
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
c_n = I[32:]
cK_n = GetPubKey(public_key.pubkey,True)
return cK_n, c_n
BITCOIN_HEADER_PRIV = "0488ade4"
BITCOIN_HEADER_PUB = "0488b21e"
TESTNET_HEADER_PRIV = "04358394"
TESTNET_HEADER_PUB = "043587cf"
BITCOIN_HEADERS = (BITCOIN_HEADER_PUB, BITCOIN_HEADER_PRIV)
TESTNET_HEADERS = (TESTNET_HEADER_PUB, TESTNET_HEADER_PRIV)
def _get_headers(testnet):
"""Returns the correct headers for either testnet or bitcoin, in the form
of a 2-tuple, like (public, private)."""
if testnet:
return TESTNET_HEADERS
else:
return BITCOIN_HEADERS
def deserialize_xkey(xkey):
xkey = DecodeBase58Check(xkey)
assert len(xkey) == 78
xkey_header = xkey[0:4].encode('hex')
# Determine if the key is a bitcoin key or a testnet key.
if xkey_header in TESTNET_HEADERS:
head = TESTNET_HEADER_PRIV
elif xkey_header in BITCOIN_HEADERS:
head = BITCOIN_HEADER_PRIV
else:
raise Exception("Unknown xkey header: '%s'" % xkey_header)
depth = ord(xkey[4])
fingerprint = xkey[5:9]
child_number = xkey[9:13]
c = xkey[13:13+32]
if xkey[0:4].encode('hex') == head:
K_or_k = xkey[13+33:]
else:
K_or_k = xkey[13+32:]
return depth, fingerprint, child_number, c, K_or_k
def get_xkey_name(xkey, testnet=False):
depth, fingerprint, child_number, c, K = deserialize_xkey(xkey)
n = int(child_number.encode('hex'), 16)
if n & BIP32_PRIME:
child_id = "%d'"%(n - BIP32_PRIME)
else:
child_id = "%d"%n
if depth == 0:
return ''
elif depth == 1:
return child_id
else:
raise BaseException("xpub depth error")
def xpub_from_xprv(xprv, testnet=False):
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
K, cK = get_pubkeys_from_secret(k)
header_pub, _ = _get_headers(testnet)
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
return EncodeBase58Check(xpub)
def bip32_root(seed, testnet=False):
import hmac
header_pub, header_priv = _get_headers(testnet)
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
master_k = I[0:32]
master_c = I[32:]
K, cK = get_pubkeys_from_secret(master_k)
xprv = (header_priv + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k
xpub = (header_pub + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
def bip32_private_derivation(xprv, branch, sequence, testnet=False):
assert sequence.startswith(branch)
if branch == sequence:
return xprv, xpub_from_xprv(xprv, testnet)
header_pub, header_priv = _get_headers(testnet)
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
if n == '': continue
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
parent_k = k
k, c = CKD_priv(k, c, i)
depth += 1
_, parent_cK = get_pubkeys_from_secret(parent_k)
fingerprint = hash_160(parent_cK)[0:4]
child_number = ("%08X"%i).decode('hex')
K, cK = get_pubkeys_from_secret(k)
xprv = header_priv.decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
def bip32_public_derivation(xpub, branch, sequence, testnet=False):
header_pub, _ = _get_headers(testnet)
depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub)
assert sequence.startswith(branch)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
if n == '': continue
i = int(n)
parent_cK = cK
cK, c = CKD_pub(cK, c, i)
depth += 1
fingerprint = hash_160(parent_cK)[0:4]
child_number = ("%08X"%i).decode('hex')
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
return EncodeBase58Check(xpub)
def bip32_private_key(sequence, k, chain):
for i in sequence:
k, chain = CKD_priv(k, chain, i)
return SecretToASecret(k, True)