# -*- coding: utf-8 -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2018 The Electrum developers # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import base64 import hashlib import functools from typing import Union, Tuple, Optional from ctypes import ( byref, c_byte, c_int, c_uint, c_char_p, c_size_t, c_void_p, create_string_buffer, CFUNCTYPE, POINTER, cast ) from .util import bfh, bh2u, assert_bytes, to_bytes, InvalidPassword, profiler, randrange from .crypto import (sha256d, aes_encrypt_with_iv, aes_decrypt_with_iv, hmac_oneshot) from . import constants from .logging import get_logger from .ecc_fast import _libsecp256k1, SECP256K1_EC_UNCOMPRESSED _logger = get_logger(__name__) def string_to_number(b: bytes) -> int: return int.from_bytes(b, byteorder='big', signed=False) def sig_string_from_der_sig(der_sig: bytes) -> bytes: r, s = get_r_and_s_from_der_sig(der_sig) return sig_string_from_r_and_s(r, s) def der_sig_from_sig_string(sig_string: bytes) -> bytes: r, s = get_r_and_s_from_sig_string(sig_string) return der_sig_from_r_and_s(r, s) def der_sig_from_r_and_s(r: int, s: int) -> bytes: sig_string = (int.to_bytes(r, length=32, byteorder="big") + int.to_bytes(s, length=32, byteorder="big")) sig = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string) if not ret: raise Exception("Bad signature") ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig) der_sig = create_string_buffer(80) # this much space should be enough der_sig_size = c_size_t(len(der_sig)) ret = _libsecp256k1.secp256k1_ecdsa_signature_serialize_der(_libsecp256k1.ctx, der_sig, byref(der_sig_size), sig) if not ret: raise Exception("failed to serialize DER sig") der_sig_size = der_sig_size.value return bytes(der_sig)[:der_sig_size] def get_r_and_s_from_der_sig(der_sig: bytes) -> Tuple[int, int]: assert isinstance(der_sig, bytes) sig = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_der(_libsecp256k1.ctx, sig, der_sig, len(der_sig)) if not ret: raise Exception("Bad signature") ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig) compact_signature = create_string_buffer(64) _libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig) r = int.from_bytes(compact_signature[:32], byteorder="big") s = int.from_bytes(compact_signature[32:], byteorder="big") return r, s def get_r_and_s_from_sig_string(sig_string: bytes) -> Tuple[int, int]: if not (isinstance(sig_string, bytes) and len(sig_string) == 64): raise Exception("sig_string must be bytes, and 64 bytes exactly") sig = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string) if not ret: raise Exception("Bad signature") ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig) compact_signature = create_string_buffer(64) _libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig) r = int.from_bytes(compact_signature[:32], byteorder="big") s = int.from_bytes(compact_signature[32:], byteorder="big") return r, s def sig_string_from_r_and_s(r: int, s: int) -> bytes: sig_string = (int.to_bytes(r, length=32, byteorder="big") + int.to_bytes(s, length=32, byteorder="big")) sig = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string) if not ret: raise Exception("Bad signature") ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig) compact_signature = create_string_buffer(64) _libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig) return bytes(compact_signature) def _x_and_y_from_pubkey_bytes(pubkey: bytes) -> Tuple[int, int]: pubkey_ptr = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ec_pubkey_parse( _libsecp256k1.ctx, pubkey_ptr, pubkey, len(pubkey)) if not ret: raise InvalidECPointException('public key could not be parsed or is invalid') pubkey_serialized = create_string_buffer(65) pubkey_size = c_size_t(65) _libsecp256k1.secp256k1_ec_pubkey_serialize( _libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey_ptr, SECP256K1_EC_UNCOMPRESSED) pubkey_serialized = bytes(pubkey_serialized) assert pubkey_serialized[0] == 0x04, pubkey_serialized x = int.from_bytes(pubkey_serialized[1:33], byteorder='big', signed=False) y = int.from_bytes(pubkey_serialized[33:65], byteorder='big', signed=False) return x, y class InvalidECPointException(Exception): """e.g. not on curve, or infinity""" @functools.total_ordering class ECPubkey(object): def __init__(self, b: Optional[bytes]): if b is not None: assert_bytes(b) self._x, self._y = _x_and_y_from_pubkey_bytes(b) else: self._x, self._y = None, None @classmethod def from_sig_string(cls, sig_string: bytes, recid: int, msg_hash: bytes) -> 'ECPubkey': assert_bytes(sig_string) if len(sig_string) != 64: raise Exception(f'wrong encoding used for signature? len={len(sig_string)} (should be 64)') if recid < 0 or recid > 3: raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid)) sig65 = create_string_buffer(65) ret = _libsecp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact( _libsecp256k1.ctx, sig65, sig_string, recid) if not ret: raise Exception('failed to parse signature') pubkey = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_recover(_libsecp256k1.ctx, pubkey, sig65, msg_hash) if not ret: raise InvalidECPointException('failed to recover public key') return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey) @classmethod def from_signature65(cls, sig: bytes, msg_hash: bytes) -> Tuple['ECPubkey', bool]: if len(sig) != 65: raise Exception(f'wrong encoding used for signature? len={len(sig)} (should be 65)') nV = sig[0] if nV < 27 or nV >= 35: raise Exception("Bad encoding") if nV >= 31: compressed = True nV -= 4 else: compressed = False recid = nV - 27 return cls.from_sig_string(sig[1:], recid, msg_hash), compressed @classmethod def from_x_and_y(cls, x: int, y: int) -> 'ECPubkey': _bytes = (b'\x04' + int.to_bytes(x, length=32, byteorder='big', signed=False) + int.to_bytes(y, length=32, byteorder='big', signed=False)) return ECPubkey(_bytes) def get_public_key_bytes(self, compressed=True): if self.is_at_infinity(): raise Exception('point is at infinity') x = int.to_bytes(self.x(), length=32, byteorder='big', signed=False) y = int.to_bytes(self.y(), length=32, byteorder='big', signed=False) if compressed: header = b'\x03' if self.y() & 1 else b'\x02' return header + x else: header = b'\x04' return header + x + y def get_public_key_hex(self, compressed=True): return bh2u(self.get_public_key_bytes(compressed)) def point(self) -> Tuple[int, int]: return self.x(), self.y() def x(self) -> int: return self._x def y(self) -> int: return self._y def _to_libsecp256k1_pubkey_ptr(self): pubkey = create_string_buffer(64) public_pair_bytes = self.get_public_key_bytes(compressed=False) ret = _libsecp256k1.secp256k1_ec_pubkey_parse( _libsecp256k1.ctx, pubkey, public_pair_bytes, len(public_pair_bytes)) if not ret: raise Exception('public key could not be parsed or is invalid') return pubkey @classmethod def _from_libsecp256k1_pubkey_ptr(cls, pubkey) -> 'ECPubkey': pubkey_serialized = create_string_buffer(65) pubkey_size = c_size_t(65) _libsecp256k1.secp256k1_ec_pubkey_serialize( _libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey, SECP256K1_EC_UNCOMPRESSED) return ECPubkey(bytes(pubkey_serialized)) def __repr__(self): if self.is_at_infinity(): return f"" return f"" def __mul__(self, other: int): if not isinstance(other, int): raise TypeError('multiplication not defined for ECPubkey and {}'.format(type(other))) other %= CURVE_ORDER if self.is_at_infinity() or other == 0: return POINT_AT_INFINITY pubkey = self._to_libsecp256k1_pubkey_ptr() ret = _libsecp256k1.secp256k1_ec_pubkey_tweak_mul(_libsecp256k1.ctx, pubkey, other.to_bytes(32, byteorder="big")) if not ret: return POINT_AT_INFINITY return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey) def __rmul__(self, other: int): return self * other def __add__(self, other): if not isinstance(other, ECPubkey): raise TypeError('addition not defined for ECPubkey and {}'.format(type(other))) if self.is_at_infinity(): return other if other.is_at_infinity(): return self pubkey1 = self._to_libsecp256k1_pubkey_ptr() pubkey2 = other._to_libsecp256k1_pubkey_ptr() pubkey_sum = create_string_buffer(64) pubkey1 = cast(pubkey1, c_char_p) pubkey2 = cast(pubkey2, c_char_p) array_of_pubkey_ptrs = (c_char_p * 2)(pubkey1, pubkey2) ret = _libsecp256k1.secp256k1_ec_pubkey_combine(_libsecp256k1.ctx, pubkey_sum, array_of_pubkey_ptrs, 2) if not ret: return POINT_AT_INFINITY return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey_sum) def __eq__(self, other) -> bool: if not isinstance(other, ECPubkey): return False return self.point() == other.point() def __ne__(self, other): return not (self == other) def __hash__(self): return hash(self.point()) def __lt__(self, other): if not isinstance(other, ECPubkey): raise TypeError('comparison not defined for ECPubkey and {}'.format(type(other))) return (self.x() or 0) < (other.x() or 0) def verify_message_for_address(self, sig65: bytes, message: bytes, algo=lambda x: sha256d(msg_magic(x))) -> None: assert_bytes(message) h = algo(message) public_key, compressed = self.from_signature65(sig65, h) # check public key if public_key != self: raise Exception("Bad signature") # check message self.verify_message_hash(sig65[1:], h) # TODO return bool instead of raising def verify_message_hash(self, sig_string: bytes, msg_hash: bytes) -> None: assert_bytes(sig_string) if len(sig_string) != 64: raise Exception(f'wrong encoding used for signature? len={len(sig_string)} (should be 64)') if not (isinstance(msg_hash, bytes) and len(msg_hash) == 32): raise Exception("msg_hash must be bytes, and 32 bytes exactly") sig = create_string_buffer(64) ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string) if not ret: raise Exception("Bad signature") ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig) pubkey = self._to_libsecp256k1_pubkey_ptr() if 1 != _libsecp256k1.secp256k1_ecdsa_verify(_libsecp256k1.ctx, sig, msg_hash, pubkey): raise Exception("Bad signature") def encrypt_message(self, message: bytes, magic: bytes = b'BIE1') -> bytes: """ ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac """ assert_bytes(message) ephemeral = ECPrivkey.generate_random_key() ecdh_key = (self * ephemeral.secret_scalar).get_public_key_bytes(compressed=True) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] ciphertext = aes_encrypt_with_iv(key_e, iv, message) ephemeral_pubkey = ephemeral.get_public_key_bytes(compressed=True) encrypted = magic + ephemeral_pubkey + ciphertext mac = hmac_oneshot(key_m, encrypted, hashlib.sha256) return base64.b64encode(encrypted + mac) @classmethod def order(cls): return CURVE_ORDER def is_at_infinity(self): return self == POINT_AT_INFINITY @classmethod def is_pubkey_bytes(cls, b: bytes): try: ECPubkey(b) return True except: return False GENERATOR = ECPubkey(bytes.fromhex('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798' '483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8')) CURVE_ORDER = 0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_BAAEDCE6_AF48A03B_BFD25E8C_D0364141 POINT_AT_INFINITY = ECPubkey(None) def msg_magic(message: bytes) -> bytes: from .bitcoin import var_int length = bfh(var_int(len(message))) return b"\x18Bitcoin Signed Message:\n" + length + message def verify_signature(pubkey: bytes, sig: bytes, h: bytes) -> bool: try: ECPubkey(pubkey).verify_message_hash(sig, h) except: return False return True def verify_message_with_address(address: str, sig65: bytes, message: bytes, *, net=None): from .bitcoin import pubkey_to_address assert_bytes(sig65, message) if net is None: net = constants.net try: h = sha256d(msg_magic(message)) public_key, compressed = ECPubkey.from_signature65(sig65, h) # check public key using the address pubkey_hex = public_key.get_public_key_hex(compressed) for txin_type in ['p2pkh','p2wpkh','p2wpkh-p2sh']: addr = pubkey_to_address(txin_type, pubkey_hex, net=net) if address == addr: break else: raise Exception("Bad signature") # check message public_key.verify_message_hash(sig65[1:], h) return True except Exception as e: _logger.info(f"Verification error: {repr(e)}") return False def is_secret_within_curve_range(secret: Union[int, bytes]) -> bool: if isinstance(secret, bytes): secret = string_to_number(secret) return 0 < secret < CURVE_ORDER class ECPrivkey(ECPubkey): def __init__(self, privkey_bytes: bytes): assert_bytes(privkey_bytes) if len(privkey_bytes) != 32: raise Exception('unexpected size for secret. should be 32 bytes, not {}'.format(len(privkey_bytes))) secret = string_to_number(privkey_bytes) if not is_secret_within_curve_range(secret): raise InvalidECPointException('Invalid secret scalar (not within curve order)') self.secret_scalar = secret pubkey = GENERATOR * secret super().__init__(pubkey.get_public_key_bytes(compressed=False)) @classmethod def from_secret_scalar(cls, secret_scalar: int): secret_bytes = int.to_bytes(secret_scalar, length=32, byteorder='big', signed=False) return ECPrivkey(secret_bytes) @classmethod def from_arbitrary_size_secret(cls, privkey_bytes: bytes): """This method is only for legacy reasons. Do not introduce new code that uses it. Unlike the default constructor, this method does not require len(privkey_bytes) == 32, and the secret does not need to be within the curve order either. """ return ECPrivkey(cls.normalize_secret_bytes(privkey_bytes)) @classmethod def normalize_secret_bytes(cls, privkey_bytes: bytes) -> bytes: scalar = string_to_number(privkey_bytes) % CURVE_ORDER if scalar == 0: raise Exception('invalid EC private key scalar: zero') privkey_32bytes = int.to_bytes(scalar, length=32, byteorder='big', signed=False) return privkey_32bytes def __repr__(self): return f"" @classmethod def generate_random_key(cls): randint = randrange(CURVE_ORDER) ephemeral_exponent = int.to_bytes(randint, length=32, byteorder='big', signed=False) return ECPrivkey(ephemeral_exponent) def get_secret_bytes(self) -> bytes: return int.to_bytes(self.secret_scalar, length=32, byteorder='big', signed=False) def sign(self, msg_hash: bytes, sigencode=None) -> bytes: if not (isinstance(msg_hash, bytes) and len(msg_hash) == 32): raise Exception("msg_hash to be signed must be bytes, and 32 bytes exactly") if sigencode is None: sigencode = sig_string_from_r_and_s privkey_bytes = self.secret_scalar.to_bytes(32, byteorder="big") nonce_function = None sig = create_string_buffer(64) def sign_with_extra_entropy(extra_entropy): ret = _libsecp256k1.secp256k1_ecdsa_sign( _libsecp256k1.ctx, sig, msg_hash, privkey_bytes, nonce_function, extra_entropy) if not ret: raise Exception('the nonce generation function failed, or the private key was invalid') compact_signature = create_string_buffer(64) _libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig) r = int.from_bytes(compact_signature[:32], byteorder="big") s = int.from_bytes(compact_signature[32:], byteorder="big") return r, s r, s = sign_with_extra_entropy(extra_entropy=None) counter = 0 while r >= 2**255: # grind for low R value https://github.com/bitcoin/bitcoin/pull/13666 counter += 1 extra_entropy = counter.to_bytes(32, byteorder="little") r, s = sign_with_extra_entropy(extra_entropy=extra_entropy) sig_string = sig_string_from_r_and_s(r, s) self.verify_message_hash(sig_string, msg_hash) sig = sigencode(r, s) return sig def sign_transaction(self, hashed_preimage: bytes) -> bytes: return self.sign(hashed_preimage, sigencode=der_sig_from_r_and_s) def sign_message(self, message: bytes, is_compressed: bool, algo=lambda x: sha256d(msg_magic(x))) -> bytes: def bruteforce_recid(sig_string): for recid in range(4): sig65 = construct_sig65(sig_string, recid, is_compressed) try: self.verify_message_for_address(sig65, message, algo) return sig65, recid except Exception as e: continue else: raise Exception("error: cannot sign message. no recid fits..") message = to_bytes(message, 'utf8') msg_hash = algo(message) sig_string = self.sign(msg_hash, sigencode=sig_string_from_r_and_s) sig65, recid = bruteforce_recid(sig_string) return sig65 def decrypt_message(self, encrypted: Union[str, bytes], magic: bytes=b'BIE1') -> bytes: encrypted = base64.b64decode(encrypted) # type: bytes if len(encrypted) < 85: raise Exception('invalid ciphertext: length') magic_found = encrypted[:4] ephemeral_pubkey_bytes = encrypted[4:37] ciphertext = encrypted[37:-32] mac = encrypted[-32:] if magic_found != magic: raise Exception('invalid ciphertext: invalid magic bytes') try: ephemeral_pubkey = ECPubkey(ephemeral_pubkey_bytes) except InvalidECPointException as e: raise Exception('invalid ciphertext: invalid ephemeral pubkey') from e ecdh_key = (ephemeral_pubkey * self.secret_scalar).get_public_key_bytes(compressed=True) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] if mac != hmac_oneshot(key_m, encrypted[:-32], hashlib.sha256): raise InvalidPassword() return aes_decrypt_with_iv(key_e, iv, ciphertext) def construct_sig65(sig_string: bytes, recid: int, is_compressed: bool) -> bytes: comp = 4 if is_compressed else 0 return bytes([27 + recid + comp]) + sig_string