mirror of
https://github.com/LBRYFoundation/LBRY-Vault.git
synced 2025-08-23 17:47:31 +00:00
ecc: use libsecp256k1 for pubkey recovery (from sig and msg)
This commit is contained in:
parent
ab0c70e291
commit
288d793893
3 changed files with 42 additions and 182 deletions
124
electrum/ecc.py
124
electrum/ecc.py
|
@ -29,11 +29,6 @@ import functools
|
|||
import copy
|
||||
from typing import Union, Tuple, Optional
|
||||
|
||||
import ecdsa
|
||||
from ecdsa.ecdsa import generator_secp256k1
|
||||
from ecdsa.curves import SECP256k1
|
||||
from ecdsa.ellipticcurve import Point
|
||||
|
||||
from .util import bfh, bh2u, assert_bytes, to_bytes, InvalidPassword, profiler, randrange
|
||||
from .crypto import (sha256d, aes_encrypt_with_iv, aes_decrypt_with_iv, hmac_oneshot)
|
||||
from . import constants
|
||||
|
@ -50,11 +45,9 @@ from .ecc_fast import _libsecp256k1, SECP256K1_EC_UNCOMPRESSED
|
|||
|
||||
_logger = get_logger(__name__)
|
||||
|
||||
CURVE_ORDER = SECP256k1.order
|
||||
|
||||
|
||||
def generator():
|
||||
return ECPubkey.from_point(generator_secp256k1)
|
||||
return GENERATOR
|
||||
|
||||
|
||||
def point_at_infinity():
|
||||
|
@ -65,17 +58,17 @@ def string_to_number(b: bytes) -> int:
|
|||
return int.from_bytes(b, byteorder='big', signed=False)
|
||||
|
||||
|
||||
def sig_string_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> bytes:
|
||||
def sig_string_from_der_sig(der_sig: bytes, order=None) -> bytes:
|
||||
r, s = get_r_and_s_from_der_sig(der_sig)
|
||||
return sig_string_from_r_and_s(r, s)
|
||||
|
||||
|
||||
def der_sig_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> bytes:
|
||||
def der_sig_from_sig_string(sig_string: bytes, order=None) -> bytes:
|
||||
r, s = get_r_and_s_from_sig_string(sig_string)
|
||||
return der_sig_from_r_and_s(r, s)
|
||||
|
||||
|
||||
def der_sig_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
||||
def der_sig_from_r_and_s(r: int, s: int, order=None) -> bytes:
|
||||
sig_string = (int.to_bytes(r, length=32, byteorder="big") +
|
||||
int.to_bytes(s, length=32, byteorder="big"))
|
||||
sig = create_string_buffer(64)
|
||||
|
@ -92,7 +85,7 @@ def der_sig_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
|||
return bytes(der_sig)[:der_sig_size]
|
||||
|
||||
|
||||
def get_r_and_s_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
|
||||
def get_r_and_s_from_der_sig(der_sig: bytes, order=None) -> Tuple[int, int]:
|
||||
assert isinstance(der_sig, bytes)
|
||||
sig = create_string_buffer(64)
|
||||
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_der(_libsecp256k1.ctx, sig, der_sig, len(der_sig))
|
||||
|
@ -106,7 +99,7 @@ def get_r_and_s_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> Tuple[int, in
|
|||
return r, s
|
||||
|
||||
|
||||
def get_r_and_s_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
|
||||
def get_r_and_s_from_sig_string(sig_string: bytes, order=None) -> Tuple[int, int]:
|
||||
if not (isinstance(sig_string, bytes) and len(sig_string) == 64):
|
||||
raise Exception("sig_string must be bytes, and 64 bytes exactly")
|
||||
sig = create_string_buffer(64)
|
||||
|
@ -121,7 +114,7 @@ def get_r_and_s_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> Tuple[i
|
|||
return r, s
|
||||
|
||||
|
||||
def sig_string_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
||||
def sig_string_from_r_and_s(r: int, s: int, order=None) -> bytes:
|
||||
sig_string = (int.to_bytes(r, length=32, byteorder="big") +
|
||||
int.to_bytes(s, length=32, byteorder="big"))
|
||||
sig = create_string_buffer(64)
|
||||
|
@ -134,19 +127,6 @@ def sig_string_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
|||
return bytes(compact_signature)
|
||||
|
||||
|
||||
def point_to_ser(point, compressed=True) -> Optional[bytes]: # TODO rm?
|
||||
if isinstance(point, tuple):
|
||||
assert len(point) == 2, f'unexpected point: {point}'
|
||||
x, y = point
|
||||
else:
|
||||
x, y = point.x(), point.y()
|
||||
if x is None or y is None: # infinity
|
||||
return None
|
||||
if compressed:
|
||||
return bfh(('%02x' % (2+(y&1))) + ('%064x' % x))
|
||||
return bfh('04'+('%064x' % x)+('%064x' % y))
|
||||
|
||||
|
||||
def _x_and_y_from_pubkey_bytes(pubkey: bytes) -> Tuple[int, int]:
|
||||
pubkey_ptr = create_string_buffer(64)
|
||||
ret = _libsecp256k1.secp256k1_ec_pubkey_parse(
|
||||
|
@ -169,50 +149,6 @@ class InvalidECPointException(Exception):
|
|||
"""e.g. not on curve, or infinity"""
|
||||
|
||||
|
||||
class _MyVerifyingKey(ecdsa.VerifyingKey):
|
||||
@classmethod
|
||||
def from_signature(klass, sig, recid, h, curve): # TODO use libsecp??
|
||||
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
|
||||
from ecdsa import util, numbertheory
|
||||
from . import msqr
|
||||
curveFp = curve.curve
|
||||
G = curve.generator
|
||||
order = G.order()
|
||||
# extract r,s from signature
|
||||
r, s = get_r_and_s_from_sig_string(sig, order)
|
||||
# 1.1
|
||||
x = r + (recid//2) * order
|
||||
# 1.3
|
||||
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
|
||||
beta = msqr.modular_sqrt(alpha, curveFp.p())
|
||||
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
|
||||
# 1.4 the constructor checks that nR is at infinity
|
||||
try:
|
||||
R = Point(curveFp, x, y, order)
|
||||
except:
|
||||
raise InvalidECPointException()
|
||||
# 1.5 compute e from message:
|
||||
e = string_to_number(h)
|
||||
minus_e = -e % order
|
||||
# 1.6 compute Q = r^-1 (sR - eG)
|
||||
inv_r = numbertheory.inverse_mod(r,order)
|
||||
try:
|
||||
Q = inv_r * ( s * R + minus_e * G )
|
||||
except:
|
||||
raise InvalidECPointException()
|
||||
return klass.from_public_point( Q, curve )
|
||||
|
||||
|
||||
class _MySigningKey(ecdsa.SigningKey):
|
||||
"""Enforce low S values in signatures"""
|
||||
|
||||
def sign_number(self, number, entropy=None, k=None):
|
||||
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k)
|
||||
if s > CURVE_ORDER//2:
|
||||
s = CURVE_ORDER - s
|
||||
return r, s
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class ECPubkey(object):
|
||||
|
||||
|
@ -227,12 +163,19 @@ class ECPubkey(object):
|
|||
def from_sig_string(cls, sig_string: bytes, recid: int, msg_hash: bytes) -> 'ECPubkey':
|
||||
assert_bytes(sig_string)
|
||||
if len(sig_string) != 64:
|
||||
raise Exception('Wrong encoding')
|
||||
raise Exception(f'wrong encoding used for signature? len={len(sig_string)} (should be 64)')
|
||||
if recid < 0 or recid > 3:
|
||||
raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid))
|
||||
ecdsa_verifying_key = _MyVerifyingKey.from_signature(sig_string, recid, msg_hash, curve=SECP256k1)
|
||||
ecdsa_point = ecdsa_verifying_key.pubkey.point
|
||||
return ECPubkey.from_point(ecdsa_point)
|
||||
sig65 = create_string_buffer(65)
|
||||
ret = _libsecp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact(
|
||||
_libsecp256k1.ctx, sig65, sig_string, recid)
|
||||
if not ret:
|
||||
raise Exception('failed to parse signature')
|
||||
pubkey = create_string_buffer(64)
|
||||
ret = _libsecp256k1.secp256k1_ecdsa_recover(_libsecp256k1.ctx, pubkey, sig65, msg_hash)
|
||||
if not ret:
|
||||
raise InvalidECPointException('failed to recover public key')
|
||||
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey)
|
||||
|
||||
@classmethod
|
||||
def from_signature65(cls, sig: bytes, msg_hash: bytes) -> Tuple['ECPubkey', bool]:
|
||||
|
@ -249,11 +192,6 @@ class ECPubkey(object):
|
|||
recid = nV - 27
|
||||
return cls.from_sig_string(sig[1:], recid, msg_hash), compressed
|
||||
|
||||
@classmethod
|
||||
def from_point(cls, point) -> 'ECPubkey':
|
||||
_bytes = point_to_ser(point, compressed=False) # faster than compressed
|
||||
return ECPubkey(_bytes)
|
||||
|
||||
@classmethod
|
||||
def from_x_and_y(cls, x: int, y: int) -> 'ECPubkey':
|
||||
_bytes = (b'\x04'
|
||||
|
@ -263,7 +201,14 @@ class ECPubkey(object):
|
|||
|
||||
def get_public_key_bytes(self, compressed=True):
|
||||
if self.is_at_infinity(): raise Exception('point is at infinity')
|
||||
return point_to_ser(self.point(), compressed)
|
||||
x = int.to_bytes(self.x(), length=32, byteorder='big', signed=False)
|
||||
y = int.to_bytes(self.y(), length=32, byteorder='big', signed=False)
|
||||
if compressed:
|
||||
header = b'\x03' if self.y() & 1 else b'\x02'
|
||||
return header + x
|
||||
else:
|
||||
header = b'\x04'
|
||||
return header + x + y
|
||||
|
||||
def get_public_key_hex(self, compressed=True):
|
||||
return bh2u(self.get_public_key_bytes(compressed))
|
||||
|
@ -411,6 +356,11 @@ class ECPubkey(object):
|
|||
return False
|
||||
|
||||
|
||||
GENERATOR = ECPubkey(bytes.fromhex('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798'
|
||||
'483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'))
|
||||
CURVE_ORDER = 0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_BAAEDCE6_AF48A03B_BFD25E8C_D0364141
|
||||
|
||||
|
||||
def msg_magic(message: bytes) -> bytes:
|
||||
from .bitcoin import var_int
|
||||
length = bfh(var_int(len(message)))
|
||||
|
@ -464,8 +414,8 @@ class ECPrivkey(ECPubkey):
|
|||
raise InvalidECPointException('Invalid secret scalar (not within curve order)')
|
||||
self.secret_scalar = secret
|
||||
|
||||
point = generator_secp256k1 * secret
|
||||
super().__init__(point_to_ser(point)) # TODO
|
||||
pubkey = generator() * secret
|
||||
super().__init__(pubkey.get_public_key_bytes(compressed=False))
|
||||
|
||||
@classmethod
|
||||
def from_secret_scalar(cls, secret_scalar: int):
|
||||
|
@ -505,8 +455,6 @@ class ECPrivkey(ECPubkey):
|
|||
raise Exception("msg_hash to be signed must be bytes, and 32 bytes exactly")
|
||||
if sigencode is None:
|
||||
sigencode = sig_string_from_r_and_s
|
||||
if sigdecode is None:
|
||||
sigdecode = get_r_and_s_from_sig_string
|
||||
|
||||
privkey_bytes = self.secret_scalar.to_bytes(32, byteorder="big")
|
||||
nonce_function = None
|
||||
|
@ -530,10 +478,10 @@ class ECPrivkey(ECPubkey):
|
|||
extra_entropy = counter.to_bytes(32, byteorder="little")
|
||||
r, s = sign_with_extra_entropy(extra_entropy=extra_entropy)
|
||||
|
||||
sig_string = sig_string_from_r_and_s(r, s)
|
||||
self.verify_message_hash(sig_string, msg_hash)
|
||||
|
||||
sig = sigencode(r, s, CURVE_ORDER)
|
||||
# public_key = private_key.get_verifying_key() # TODO
|
||||
# if not public_key.verify_digest(sig, data, sigdecode=sigdecode):
|
||||
# raise Exception('Sanity check verifying our own signature failed.')
|
||||
return sig
|
||||
|
||||
def sign_transaction(self, hashed_preimage: bytes) -> bytes:
|
||||
|
|
|
@ -91,6 +91,12 @@ def load_library():
|
|||
secp256k1.secp256k1_ec_pubkey_combine.argtypes = [c_void_p, c_char_p, c_void_p, c_size_t]
|
||||
secp256k1.secp256k1_ec_pubkey_combine.restype = c_int
|
||||
|
||||
secp256k1.secp256k1_ecdsa_recover.argtypes = [c_void_p, c_char_p, c_char_p, c_char_p]
|
||||
secp256k1.secp256k1_ecdsa_recover.restype = c_int
|
||||
|
||||
secp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact.argtypes = [c_void_p, c_char_p, c_char_p, c_int]
|
||||
secp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact.restype = c_int
|
||||
|
||||
secp256k1.ctx = secp256k1.secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)
|
||||
ret = secp256k1.secp256k1_context_randomize(secp256k1.ctx, os.urandom(32))
|
||||
if ret:
|
||||
|
|
|
@ -1,94 +0,0 @@
|
|||
# from http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
|
||||
|
||||
def modular_sqrt(a, p):
|
||||
""" Find a quadratic residue (mod p) of 'a'. p
|
||||
must be an odd prime.
|
||||
|
||||
Solve the congruence of the form:
|
||||
x^2 = a (mod p)
|
||||
And returns x. Note that p - x is also a root.
|
||||
|
||||
0 is returned is no square root exists for
|
||||
these a and p.
|
||||
|
||||
The Tonelli-Shanks algorithm is used (except
|
||||
for some simple cases in which the solution
|
||||
is known from an identity). This algorithm
|
||||
runs in polynomial time (unless the
|
||||
generalized Riemann hypothesis is false).
|
||||
"""
|
||||
# Simple cases
|
||||
#
|
||||
if legendre_symbol(a, p) != 1:
|
||||
return 0
|
||||
elif a == 0:
|
||||
return 0
|
||||
elif p == 2:
|
||||
return p
|
||||
elif p % 4 == 3:
|
||||
return pow(a, (p + 1) // 4, p)
|
||||
|
||||
# Partition p-1 to s * 2^e for an odd s (i.e.
|
||||
# reduce all the powers of 2 from p-1)
|
||||
#
|
||||
s = p - 1
|
||||
e = 0
|
||||
while s % 2 == 0:
|
||||
s //= 2
|
||||
e += 1
|
||||
|
||||
# Find some 'n' with a legendre symbol n|p = -1.
|
||||
# Shouldn't take long.
|
||||
#
|
||||
n = 2
|
||||
while legendre_symbol(n, p) != -1:
|
||||
n += 1
|
||||
|
||||
# Here be dragons!
|
||||
# Read the paper "Square roots from 1; 24, 51,
|
||||
# 10 to Dan Shanks" by Ezra Brown for more
|
||||
# information
|
||||
#
|
||||
|
||||
# x is a guess of the square root that gets better
|
||||
# with each iteration.
|
||||
# b is the "fudge factor" - by how much we're off
|
||||
# with the guess. The invariant x^2 = ab (mod p)
|
||||
# is maintained throughout the loop.
|
||||
# g is used for successive powers of n to update
|
||||
# both a and b
|
||||
# r is the exponent - decreases with each update
|
||||
#
|
||||
x = pow(a, (s + 1) // 2, p)
|
||||
b = pow(a, s, p)
|
||||
g = pow(n, s, p)
|
||||
r = e
|
||||
|
||||
while True:
|
||||
t = b
|
||||
m = 0
|
||||
for m in range(r):
|
||||
if t == 1:
|
||||
break
|
||||
t = pow(t, 2, p)
|
||||
|
||||
if m == 0:
|
||||
return x
|
||||
|
||||
gs = pow(g, 2 ** (r - m - 1), p)
|
||||
g = (gs * gs) % p
|
||||
x = (x * gs) % p
|
||||
b = (b * g) % p
|
||||
r = m
|
||||
|
||||
def legendre_symbol(a, p):
|
||||
""" Compute the Legendre symbol a|p using
|
||||
Euler's criterion. p is a prime, a is
|
||||
relatively prime to p (if p divides
|
||||
a, then a|p = 0)
|
||||
|
||||
Returns 1 if a has a square root modulo
|
||||
p, -1 otherwise.
|
||||
"""
|
||||
ls = pow(a, (p - 1) // 2, p)
|
||||
return -1 if ls == p - 1 else ls
|
Loading…
Add table
Reference in a new issue